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Apache Airflow (incubating) Documentation


Important

Disclaimer: Apache Airflow is an effort undergoing incubation at The
Apache Software Foundation (ASF), sponsored by the Apache Incubator.
Incubation is required of all newly accepted projects until a further
review indicates that the infrastructure, communications, and
decision making process have stabilized in a manner consistent with
other successful ASF projects. While incubation status is not
necessarily a reflection of the completeness or stability of
the code, it does indicate that the project has yet to be fully
endorsed by the ASF.



Airflow is a platform to programmatically author, schedule and monitor
workflows.

Use airflow to author workflows as directed acyclic graphs (DAGs) of tasks.
The airflow scheduler executes your tasks on an array of workers while
following the specified dependencies. Rich command line utilities make
performing complex surgeries on DAGs a snap. The rich user interface
makes it easy to visualize pipelines running in production,
monitor progress, and troubleshoot issues when needed.

When workflows are defined as code, they become more maintainable,
versionable, testable, and collaborative.
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Principles


	Dynamic:  Airflow pipelines are configuration as code (Python), allowing for dynamic pipeline generation. This allows for writing code that instantiates pipelines dynamically.

	Extensible:  Easily define your own operators, executors and extend the library so that it fits the level of abstraction that suits your environment.

	Elegant:  Airflow pipelines are lean and explicit. Parameterizing your scripts is built into the core of Airflow using the powerful Jinja templating engine.

	Scalable:  Airflow has a modular architecture and uses a message queue to orchestrate an arbitrary number of workers. Airflow is ready to scale to infinity.






Beyond the Horizon

Airflow is not a data streaming solution. Tasks do not move data from
one to the other (though tasks can exchange metadata!). Airflow is not
in the Spark Streaming [http://spark.apache.org/streaming/]
or Storm [https://storm.apache.org/] space, it is more comparable to
Oozie [http://oozie.apache.org/] or
Azkaban [http://data.linkedin.com/opensource/azkaban].

Workflows are expected to be mostly static or slowly changing. You can think
of the structure of the tasks in your workflow as slightly more dynamic
than a database structure would be. Airflow workflows are expected to look
similar from a run to the next, this allows for clarity around
unit of work and continuity.




Content



	Project
	History

	Committers

	Resources & links

	Roadmap





	License

	Quick Start
	What’s Next?





	Installation
	Getting Airflow

	Extra Packages





	Tutorial
	Example Pipeline definition

	It’s a DAG definition file

	Importing Modules

	Default Arguments

	Instantiate a DAG

	Tasks

	Templating with Jinja

	Setting up Dependencies

	Recap

	Testing
	Running the Script

	Command Line Metadata Validation

	Testing

	Backfill





	What’s Next?





	Configuration
	Setting Configuration Options

	Setting up a Backend

	Connections

	Scaling Out with Celery

	Scaling Out with Dask

	Logs

	Scaling Out on Mesos (community contributed)

	Integration with systemd

	Integration with upstart

	Test Mode





	UI / Screenshots
	DAGs View

	Tree View

	Graph View

	Variable View

	Gantt Chart

	Task Duration

	Code View

	Task Instance Context Menu





	Concepts
	Core Ideas
	DAGs
	Scope

	Default Arguments

	Context Manager





	Operators
	DAG Assignment

	Bitshift Composition





	Tasks

	Task Instances

	Workflows





	Additional Functionality
	Hooks

	Pools

	Connections

	Queues

	XComs

	Variables

	Branching

	SubDAGs

	SLAs

	Trigger Rules

	Latest Run Only

	Zombies & Undeads

	Cluster Policy

	Documentation & Notes

	Jinja Templating





	Packaged dags





	Data Profiling
	Adhoc Queries

	Charts
	Chart Screenshot

	Chart Form Screenshot









	Command Line Interface
	Positional Arguments

	Sub-commands:
	resetdb
	Named Arguments





	render
	Positional Arguments

	Named Arguments





	variables
	Named Arguments





	connections
	Named Arguments





	pause
	Positional Arguments

	Named Arguments





	task_failed_deps
	Positional Arguments

	Named Arguments





	version

	trigger_dag
	Positional Arguments

	Named Arguments





	initdb

	test
	Positional Arguments

	Named Arguments





	unpause
	Positional Arguments

	Named Arguments





	dag_state
	Positional Arguments

	Named Arguments





	run
	Positional Arguments

	Named Arguments





	list_tasks
	Positional Arguments

	Named Arguments





	backfill
	Positional Arguments

	Named Arguments





	list_dags
	Named Arguments





	kerberos
	Positional Arguments

	Named Arguments





	worker
	Named Arguments





	webserver
	Named Arguments





	flower
	Named Arguments





	scheduler
	Named Arguments





	task_state
	Positional Arguments

	Named Arguments





	pool
	Named Arguments





	serve_logs

	clear
	Positional Arguments

	Named Arguments





	upgradedb









	Scheduling & Triggers
	DAG Runs

	Backfill and Catchup

	External Triggers

	To Keep in Mind





	Plugins
	What for?

	Why build on top of Airflow?

	Interface

	Example





	Security
	Web Authentication
	Password

	LDAP

	Roll your own





	Multi-tenancy

	Kerberos
	Limitations

	Enabling kerberos
	Airflow

	Hadoop





	Using kerberos authentication





	OAuth Authentication
	GitHub Enterprise (GHE) Authentication
	Setting up GHE Authentication





	Google Authentication
	Setting up Google Authentication









	SSL

	Impersonation
	Default Impersonation









	Experimental Rest API
	Endpoints

	CLI

	Authentication





	Integration
	Azure: Microsoft Azure
	Azure Blob Storage
	WasbBlobSensor

	WasbPrefixSensor

	FileToWasbOperator

	WasbHook









	AWS: Amazon Webservices

	GCP: Google Cloud Platform
	BigQuery
	BigQueryCheckOperator

	BigQueryValueCheckOperator

	BigQueryIntervalCheckOperator

	BigQueryOperator

	BigQueryToBigQueryOperator

	BigQueryToCloudStorageOperator





	Cloud DataFlow
	DataFlowJavaOperator





	Cloud DataProc
	DataProcPigOperator

	DataProcHiveOperator

	DataProcSparkSqlOperator

	DataProcSparkOperator

	DataProcHadoopOperator





	Cloud Datastore

	Cloud Storage
	GoogleCloudStorageDownloadOperator

	GoogleCloudStorageToBigQueryOperator













	FAQ
	Why isn’t my task getting scheduled?

	How do I trigger tasks based on another task’s failure?

	Why are connection passwords still not encrypted in the metadata db after I installed airflow[crypto]?

	What’s the deal with start_date?

	How can I create DAGs dynamically?

	What are all the airflow run commands in my process list?





	API Reference
	Operators
	BaseOperator

	BaseSensorOperator

	Operator API

	Community-contributed Operators





	Macros
	Default Variables

	Macros





	Models

	Hooks
	Community contributed hooks





	Executors
	Community-contributed executors



















          

      

      

    

  

    
      
          
            
  
Project


History

Airflow was started in October 2014 by Maxime Beauchemin at Airbnb.
It was open source from the very first commit and officially brought under
the Airbnb Github and announced in June 2015.

The project joined the Apache Software Foundation’s incubation program in March 2016.




Committers


	@mistercrunch (Maxime “Max” Beauchemin)

	@r39132 (Siddharth “Sid” Anand)

	@criccomini (Chris Riccomini)

	@bolkedebruin (Bolke de Bruin)

	@artwr (Arthur Wiedmer)

	@jlowin (Jeremiah Lowin)

	@patrickleotardif (Patrick Leo Tardif)

	@aoen (Dan Davydov)

	@syvineckruyk (Steven Yvinec-Kruyk)



For the full list of contributors, take a look at Airflow’s Github
Contributor page: [https://github.com/apache/incubator-airflow/graphs/contributors]




Resources & links


	Airflow’s official documentation [http://airflow.apache.org/]

	Mailing list (send emails to
dev-subscribe@airflow.incubator.apache.org and/or
commits-subscribe@airflow.incubator.apache.org
to subscribe to each)

	Issues on Apache’s Jira [https://issues.apache.org/jira/browse/AIRFLOW]

	Gitter (chat) Channel [https://gitter.im/airbnb/airflow]

	More resources and links to Airflow related content on the Wiki [https://cwiki.apache.org/confluence/display/AIRFLOW/Airflow+Links]






Roadmap

Please refer to the Roadmap on the wiki [https://cwiki.apache.org/confluence/display/AIRFLOW/Airflow+Home]







          

      

      

    

  

    
      
          
            
  
License
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Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

   "License" shall mean the terms and conditions for use, reproduction,
   and distribution as defined by Sections 1 through 9 of this document.

   "Licensor" shall mean the copyright owner or entity authorized by
   the copyright owner that is granting the License.

   "Legal Entity" shall mean the union of the acting entity and all
   other entities that control, are controlled by, or are under common
   control with that entity. For the purposes of this definition,
   "control" means (i) the power, direct or indirect, to cause the
   direction or management of such entity, whether by contract or
   otherwise, or (ii) ownership of fifty percent (50%) or more of the
   outstanding shares, or (iii) beneficial ownership of such entity.

   "You" (or "Your") shall mean an individual or Legal Entity
   exercising permissions granted by this License.

   "Source" form shall mean the preferred form for making modifications,
   including but not limited to software source code, documentation
   source, and configuration files.

   "Object" form shall mean any form resulting from mechanical
   transformation or translation of a Source form, including but
   not limited to compiled object code, generated documentation,
   and conversions to other media types.

   "Work" shall mean the work of authorship, whether in Source or
   Object form, made available under the License, as indicated by a
   copyright notice that is included in or attached to the work
   (an example is provided in the Appendix below).

   "Derivative Works" shall mean any work, whether in Source or Object
   form, that is based on (or derived from) the Work and for which the
   editorial revisions, annotations, elaborations, or other modifications
   represent, as a whole, an original work of authorship. For the purposes
   of this License, Derivative Works shall not include works that remain
   separable from, or merely link (or bind by name) to the interfaces of,
   the Work and Derivative Works thereof.

   "Contribution" shall mean any work of authorship, including
   the original version of the Work and any modifications or additions
   to that Work or Derivative Works thereof, that is intentionally
   submitted to Licensor for inclusion in the Work by the copyright owner
   or by an individual or Legal Entity authorized to submit on behalf of
   the copyright owner. For the purposes of this definition, "submitted"
   means any form of electronic, verbal, or written communication sent
   to the Licensor or its representatives, including but not limited to
   communication on electronic mailing lists, source code control systems,
   and issue tracking systems that are managed by, or on behalf of, the
   Licensor for the purpose of discussing and improving the Work, but
   excluding communication that is conspicuously marked or otherwise
   designated in writing by the copyright owner as "Not a Contribution."

   "Contributor" shall mean Licensor and any individual or Legal Entity
   on behalf of whom a Contribution has been received by Licensor and
   subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
   this License, each Contributor hereby grants to You a perpetual,
   worldwide, non-exclusive, no-charge, royalty-free, irrevocable
   copyright license to reproduce, prepare Derivative Works of,
   publicly display, publicly perform, sublicense, and distribute the
   Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
   this License, each Contributor hereby grants to You a perpetual,
   worldwide, non-exclusive, no-charge, royalty-free, irrevocable
   (except as stated in this section) patent license to make, have made,
   use, offer to sell, sell, import, and otherwise transfer the Work,
   where such license applies only to those patent claims licensable
   by such Contributor that are necessarily infringed by their
   Contribution(s) alone or by combination of their Contribution(s)
   with the Work to which such Contribution(s) was submitted. If You
   institute patent litigation against any entity (including a
   cross-claim or counterclaim in a lawsuit) alleging that the Work
   or a Contribution incorporated within the Work constitutes direct
   or contributory patent infringement, then any patent licenses
   granted to You under this License for that Work shall terminate
   as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
   Work or Derivative Works thereof in any medium, with or without
   modifications, and in Source or Object form, provided that You
   meet the following conditions:

   (a) You must give any other recipients of the Work or
       Derivative Works a copy of this License; and

   (b) You must cause any modified files to carry prominent notices
       stating that You changed the files; and

   (c) You must retain, in the Source form of any Derivative Works
       that You distribute, all copyright, patent, trademark, and
       attribution notices from the Source form of the Work,
       excluding those notices that do not pertain to any part of
       the Derivative Works; and

   (d) If the Work includes a "NOTICE" text file as part of its
       distribution, then any Derivative Works that You distribute must
       include a readable copy of the attribution notices contained
       within such NOTICE file, excluding those notices that do not
       pertain to any part of the Derivative Works, in at least one
       of the following places: within a NOTICE text file distributed
       as part of the Derivative Works; within the Source form or
       documentation, if provided along with the Derivative Works; or,
       within a display generated by the Derivative Works, if and
       wherever such third-party notices normally appear. The contents
       of the NOTICE file are for informational purposes only and
       do not modify the License. You may add Your own attribution
       notices within Derivative Works that You distribute, alongside
       or as an addendum to the NOTICE text from the Work, provided
       that such additional attribution notices cannot be construed
       as modifying the License.

   You may add Your own copyright statement to Your modifications and
   may provide additional or different license terms and conditions
   for use, reproduction, or distribution of Your modifications, or
   for any such Derivative Works as a whole, provided Your use,
   reproduction, and distribution of the Work otherwise complies with
   the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
   any Contribution intentionally submitted for inclusion in the Work
   by You to the Licensor shall be under the terms and conditions of
   this License, without any additional terms or conditions.
   Notwithstanding the above, nothing herein shall supersede or modify
   the terms of any separate license agreement you may have executed
   with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
   names, trademarks, service marks, or product names of the Licensor,
   except as required for reasonable and customary use in describing the
   origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
   agreed to in writing, Licensor provides the Work (and each
   Contributor provides its Contributions) on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
   implied, including, without limitation, any warranties or conditions
   of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
   PARTICULAR PURPOSE. You are solely responsible for determining the
   appropriateness of using or redistributing the Work and assume any
   risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
   whether in tort (including negligence), contract, or otherwise,
   unless required by applicable law (such as deliberate and grossly
   negligent acts) or agreed to in writing, shall any Contributor be
   liable to You for damages, including any direct, indirect, special,
   incidental, or consequential damages of any character arising as a
   result of this License or out of the use or inability to use the
   Work (including but not limited to damages for loss of goodwill,
   work stoppage, computer failure or malfunction, or any and all
   other commercial damages or losses), even if such Contributor
   has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
   the Work or Derivative Works thereof, You may choose to offer,
   and charge a fee for, acceptance of support, warranty, indemnity,
   or other liability obligations and/or rights consistent with this
   License. However, in accepting such obligations, You may act only
   on Your own behalf and on Your sole responsibility, not on behalf
   of any other Contributor, and only if You agree to indemnify,
   defend, and hold each Contributor harmless for any liability
   incurred by, or claims asserted against, such Contributor by reason
   of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

   To apply the Apache License to your work, attach the following
   boilerplate notice, with the fields enclosed by brackets "[]"
   replaced with your own identifying information. (Don't include
   the brackets!)  The text should be enclosed in the appropriate
   comment syntax for the file format. We also recommend that a
   file or class name and description of purpose be included on the
   same "printed page" as the copyright notice for easier
   identification within third-party archives.

Copyright 2015 Apache Software Foundation

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Status API Training Shop Blog About
© 2016 GitHub, Inc. Terms Privacy Security Contact Help









          

      

      

    

  

    
      
          
            
  
Quick Start

The installation is quick and straightforward.

# airflow needs a home, ~/airflow is the default,
# but you can lay foundation somewhere else if you prefer
# (optional)
export AIRFLOW_HOME=~/airflow

# install from pypi using pip
pip install airflow

# initialize the database
airflow initdb

# start the web server, default port is 8080
airflow webserver -p 8080





Upon running these commands, Airflow will create the $AIRFLOW_HOME folder
and lay an “airflow.cfg” file with defaults that get you going fast. You can
inspect the file either in $AIRFLOW_HOME/airflow.cfg, or through the UI in
the Admin->Configuration menu. The PID file for the webserver will be stored
in $AIRFLOW_HOME/airflow-webserver.pid or in /run/airflow/webserver.pid
if started by systemd.

Out of the box, Airflow uses a sqlite database, which you should outgrow
fairly quickly since no parallelization is possible using this database
backend. It works in conjunction with the SequentialExecutor which will
only run task instances sequentially. While this is very limiting, it allows
you to get up and running quickly and take a tour of the UI and the
command line utilities.

Here are a few commands that will trigger a few task instances. You should
be able to see the status of the jobs change in the example1 DAG as you
run the commands below.

# run your first task instance
airflow run example_bash_operator runme_0 2015-01-01
# run a backfill over 2 days
airflow backfill example_bash_operator -s 2015-01-01 -e 2015-01-02






What’s Next?

From this point, you can head to the Tutorial section for further examples or the Configuration section if you’re ready to get your hands dirty.







          

      

      

    

  

    
      
          
            
  
Installation


Getting Airflow

The easiest way to install the latest stable version of Airflow is with pip:

pip install airflow





You can also install Airflow with support for extra features like s3 or postgres:

pip install "airflow[s3, postgres]"








Extra Packages

The airflow PyPI basic package only installs what’s needed to get started.
Subpackages can be installed depending on what will be useful in your
environment. For instance, if you don’t need connectivity with Postgres,
you won’t have to go through the trouble of installing the postgres-devel
yum package, or whatever equivalent applies on the distribution you are using.

Behind the scenes, Airflow does conditional imports of operators that require
these extra dependencies.

Here’s the list of the subpackages and what they enable:








	subpackage
	install command
	enables




	all
	pip install airflow[all]
	All Airflow features known to man


	all_dbs
	pip install airflow[all_dbs]
	All databases integrations


	async
	pip install airflow[async]
	Async worker classes for gunicorn


	devel
	pip install airflow[devel]
	Minimum dev tools requirements


	devel_hadoop
	pip install airflow[devel_hadoop]
	Airflow + dependencies on the Hadoop stack


	celery
	pip install airflow[celery]
	CeleryExecutor


	crypto
	pip install airflow[crypto]
	Encrypt connection passwords in metadata db


	druid
	pip install airflow[druid]
	Druid.io related operators & hooks


	gcp_api
	pip install airflow[gcp_api]
	Google Cloud Platform hooks and operators
(using google-api-python-client)


	jdbc
	pip install airflow[jdbc]
	JDBC hooks and operators


	hdfs
	pip install airflow[hdfs]
	HDFS hooks and operators


	hive
	pip install airflow[hive]
	All Hive related operators


	kerberos
	pip install airflow[kerberos]
	kerberos integration for kerberized hadoop


	ldap
	pip install airflow[ldap]
	ldap authentication for users


	mssql
	pip install airflow[mssql]
	Microsoft SQL operators and hook,
support as an Airflow backend


	mysql
	pip install airflow[mysql]
	MySQL operators and hook, support as
an Airflow backend


	password
	pip install airflow[password]
	Password Authentication for users


	postgres
	pip install airflow[postgres]
	Postgres operators and hook, support
as an Airflow backend


	qds
	pip install airflow[qds]
	Enable QDS (qubole data services) support


	rabbitmq
	pip install airflow[rabbitmq]
	Rabbitmq support as a Celery backend


	s3
	pip install airflow[s3]
	S3KeySensor, S3PrefixSensor


	samba
	pip install airflow[samba]
	Hive2SambaOperator


	slack
	pip install airflow[slack]
	SlackAPIPostOperator


	vertica
	pip install airflow[vertica]
	Vertica hook
support as an Airflow backend


	cloudant
	pip install airflow[cloudant]
	Cloudant hook


	redis
	pip install airflow[redis]
	Redis hooks and sensors











          

      

      

    

  

    
      
          
            
  
Tutorial

This tutorial walks you through some of the fundamental Airflow concepts,
objects, and their usage while writing your first pipeline.


Example Pipeline definition

Here is an example of a basic pipeline definition. Do not worry if this looks
complicated, a line by line explanation follows below.

"""
Code that goes along with the Airflow tutorial located at:
https://github.com/airbnb/airflow/blob/master/airflow/example_dags/tutorial.py
"""
from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from datetime import datetime, timedelta


default_args = {
    'owner': 'airflow',
    'depends_on_past': False,
    'start_date': datetime(2015, 6, 1),
    'email': ['airflow@example.com'],
    'email_on_failure': False,
    'email_on_retry': False,
    'retries': 1,
    'retry_delay': timedelta(minutes=5),
    # 'queue': 'bash_queue',
    # 'pool': 'backfill',
    # 'priority_weight': 10,
    # 'end_date': datetime(2016, 1, 1),
}

dag = DAG('tutorial', default_args=default_args)

# t1, t2 and t3 are examples of tasks created by instantiating operators
t1 = BashOperator(
    task_id='print_date',
    bash_command='date',
    dag=dag)

t2 = BashOperator(
    task_id='sleep',
    bash_command='sleep 5',
    retries=3,
    dag=dag)

templated_command = """
    {% for i in range(5) %}
        echo "{{ ds }}"
        echo "{{ macros.ds_add(ds, 7)}}"
        echo "{{ params.my_param }}"
    {% endfor %}
"""

t3 = BashOperator(
    task_id='templated',
    bash_command=templated_command,
    params={'my_param': 'Parameter I passed in'},
    dag=dag)

t2.set_upstream(t1)
t3.set_upstream(t1)








It’s a DAG definition file

One thing to wrap your head around (it may not be very intuitive for everyone
at first) is that this Airflow Python script is really
just a configuration file specifying the DAG’s structure as code.
The actual tasks defined here will run in a different context from
the context of this script. Different tasks run on different workers
at different points in time, which means that this script cannot be used
to cross communicate between tasks. Note that for this
purpose we have a more advanced feature called XCom.

People sometimes think of the DAG definition file as a place where they
can do some actual data processing - that is not the case at all!
The script’s purpose is to define a DAG object. It needs to evaluate
quickly (seconds, not minutes) since the scheduler will execute it
periodically to reflect the changes if any.




Importing Modules

An Airflow pipeline is just a Python script that happens to define an
Airflow DAG object. Let’s start by importing the libraries we will need.

# The DAG object; we'll need this to instantiate a DAG
from airflow import DAG

# Operators; we need this to operate!
from airflow.operators.bash_operator import BashOperator








Default Arguments

We’re about to create a DAG and some tasks, and we have the choice to
explicitly pass a set of arguments to each task’s constructor
(which would become redundant), or (better!) we can define a dictionary
of default parameters that we can use when creating tasks.

from datetime import datetime, timedelta

default_args = {
    'owner': 'airflow',
    'depends_on_past': False,
    'start_date': datetime(2015, 6, 1),
    'email': ['airflow@example.com'],
    'email_on_failure': False,
    'email_on_retry': False,
    'retries': 1,
    'retry_delay': timedelta(minutes=5),
    # 'queue': 'bash_queue',
    # 'pool': 'backfill',
    # 'priority_weight': 10,
    # 'end_date': datetime(2016, 1, 1),
}





For more information about the BaseOperator’s parameters and what they do,
refer to the :py:class:airflow.models.BaseOperator documentation.

Also, note that you could easily define different sets of arguments that
would serve different purposes. An example of that would be to have
different settings between a production and development environment.




Instantiate a DAG

We’ll need a DAG object to nest our tasks into. Here we pass a string
that defines the dag_id, which serves as a unique identifier for your DAG.
We also pass the default argument dictionary that we just defined and
define a schedule_interval of 1 day for the DAG.

dag = DAG(
    'tutorial', default_args=default_args, schedule_interval=timedelta(1))








Tasks

Tasks are generated when instantiating operator objects. An object
instantiated from an operator is called a constructor. The first argument
task_id acts as a unique identifier for the task.

t1 = BashOperator(
    task_id='print_date',
    bash_command='date',
    dag=dag)

t2 = BashOperator(
    task_id='sleep',
    bash_command='sleep 5',
    retries=3,
    dag=dag)





Notice how we pass a mix of operator specific arguments (bash_command) and
an argument common to all operators (retries) inherited
from BaseOperator to the operator’s constructor. This is simpler than
passing every argument for every constructor call. Also, notice that in
the second task we override the retries parameter with 3.

The precedence rules for a task are as follows:


	Explicitly passed arguments

	Values that exist in the default_args dictionary

	The operator’s default value, if one exists



A task must include or inherit the arguments task_id and owner,
otherwise Airflow will raise an exception.




Templating with Jinja

Airflow leverages the power of
Jinja Templating [http://jinja.pocoo.org/docs/dev/]  and provides
the pipeline author
with a set of built-in parameters and macros. Airflow also provides
hooks for the pipeline author to define their own parameters, macros and
templates.

This tutorial barely scratches the surface of what you can do with
templating in Airflow, but the goal of this section is to let you know
this feature exists, get you familiar with double curly brackets, and
point to the most common template variable: {{ ds }}.

templated_command = """
    {% for i in range(5) %}
        echo "{{ ds }}"
        echo "{{ macros.ds_add(ds, 7) }}"
        echo "{{ params.my_param }}"
    {% endfor %}
"""

t3 = BashOperator(
    task_id='templated',
    bash_command=templated_command,
    params={'my_param': 'Parameter I passed in'},
    dag=dag)





Notice that the templated_command contains code logic in {% %} blocks,
references parameters like {{ ds }}, calls a function as in
{{ macros.ds_add(ds, 7)}}, and references a user-defined parameter
in {{ params.my_param }}.

The params hook in BaseOperator allows you to pass a dictionary of
parameters and/or objects to your templates. Please take the time
to understand how the parameter my_param makes it through to the template.

Files can also be passed to the bash_command argument, like
bash_command='templated_command.sh', where the file location is relative to
the directory containing the pipeline file (tutorial.py in this case). This
may be desirable for many reasons, like separating your script’s logic and
pipeline code, allowing for proper code highlighting in files composed in
different languages, and general flexibility in structuring pipelines. It is
also possible to define your template_searchpath as pointing to any folder
locations in the DAG constructor call.

For more information on the variables and macros that can be referenced
in templates, make sure to read through the Macros section




Setting up Dependencies

We have two simple tasks that do not depend on each other. Here’s a few ways
you can define dependencies between them:

t2.set_upstream(t1)

# This means that t2 will depend on t1
# running successfully to run
# It is equivalent to
# t1.set_downstream(t2)

t3.set_upstream(t1)

# all of this is equivalent to
# dag.set_dependency('print_date', 'sleep')
# dag.set_dependency('print_date', 'templated')





Note that when executing your script, Airflow will raise exceptions when
it finds cycles in your DAG or when a dependency is referenced more
than once.




Recap

Alright, so we have a pretty basic DAG. At this point your code should look
something like this:

"""
Code that goes along with the Airflow located at:
http://airflow.readthedocs.org/en/latest/tutorial.html
"""
from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from datetime import datetime, timedelta


default_args = {
    'owner': 'airflow',
    'depends_on_past': False,
    'start_date': datetime(2015, 6, 1),
    'email': ['airflow@example.com'],
    'email_on_failure': False,
    'email_on_retry': False,
    'retries': 1,
    'retry_delay': timedelta(minutes=5),
    # 'queue': 'bash_queue',
    # 'pool': 'backfill',
    # 'priority_weight': 10,
    # 'end_date': datetime(2016, 1, 1),
}

dag = DAG(
    'tutorial', default_args=default_args, schedule_interval=timedelta(1))

# t1, t2 and t3 are examples of tasks created by instantiating operators
t1 = BashOperator(
    task_id='print_date',
    bash_command='date',
    dag=dag)

t2 = BashOperator(
    task_id='sleep',
    bash_command='sleep 5',
    retries=3,
    dag=dag)

templated_command = """
    {% for i in range(5) %}
        echo "{{ ds }}"
        echo "{{ macros.ds_add(ds, 7)}}"
        echo "{{ params.my_param }}"
    {% endfor %}
"""

t3 = BashOperator(
    task_id='templated',
    bash_command=templated_command,
    params={'my_param': 'Parameter I passed in'},
    dag=dag)

t2.set_upstream(t1)
t3.set_upstream(t1)








Testing


Running the Script

Time to run some tests. First let’s make sure that the pipeline
parses. Let’s assume we’re saving the code from the previous step in
tutorial.py in the DAGs folder referenced in your airflow.cfg.
The default location for your DAGs is ~/airflow/dags.

python ~/airflow/dags/tutorial.py





If the script does not raise an exception it means that you haven’t done
anything horribly wrong, and that your Airflow environment is somewhat
sound.




Command Line Metadata Validation

Let’s run a few commands to validate this script further.

# print the list of active DAGs
airflow list_dags

# prints the list of tasks the "tutorial" dag_id
airflow list_tasks tutorial

# prints the hierarchy of tasks in the tutorial DAG
airflow list_tasks tutorial --tree








Testing

Let’s test by running the actual task instances on a specific date. The
date specified in this context is an execution_date, which simulates the
scheduler running your task or dag at a specific date + time:

# command layout: command subcommand dag_id task_id date

# testing print_date
airflow test tutorial print_date 2015-06-01

# testing sleep
airflow test tutorial sleep 2015-06-01





Now remember what we did with templating earlier? See how this template
gets rendered and executed by running this command:

# testing templated
airflow test tutorial templated 2015-06-01





This should result in displaying a verbose log of events and ultimately
running your bash command and printing the result.

Note that the airflow test command runs task instances locally, outputs
their log to stdout (on screen), doesn’t bother with dependencies, and
doesn’t communicate state (running, success, failed, ...) to the database.
It simply allows testing a single task instance.




Backfill

Everything looks like it’s running fine so let’s run a backfill.
backfill will respect your dependencies, emit logs into files and talk to
the database to record status. If you do have a webserver up, you’ll be able
to track the progress. airflow webserver will start a web server if you
are interested in tracking the progress visually as your backfill progresses.

Note that if you use depends_on_past=True, individual task instances
will depend on the success of the preceding task instance, except for the
start_date specified itself, for which this dependency is disregarded.

The date range in this context is a start_date and optionally an end_date,
which are used to populate the run schedule with task instances from this dag.

# optional, start a web server in debug mode in the background
# airflow webserver --debug &

# start your backfill on a date range
airflow backfill tutorial -s 2015-06-01 -e 2015-06-07










What’s Next?

That’s it, you’ve written, tested and backfilled your very first Airflow
pipeline. Merging your code into a code repository that has a master scheduler
running against it should get it to get triggered and run every day.

Here’s a few things you might want to do next:


	Take an in-depth tour of the UI - click all the things!



	Keep reading the docs! Especially the sections on:



	Command line interface

	Operators

	Macros








	Write your first pipeline!











          

      

      

    

  

    
      
          
            
  
Configuration

Setting up the sandbox in the Quick Start section was easy;
building a production-grade environment requires a bit more work!


Setting Configuration Options

The first time you run Airflow, it will create a file called airflow.cfg in
your $AIRFLOW_HOME directory (~/airflow by default). This file contains Airflow’s configuration and you
can edit it to change any of the settings. You can also set options with environment variables by using this format:
$AIRFLOW__{SECTION}__{KEY} (note the double underscores).

For example, the
metadata database connection string can either be set in airflow.cfg like this:

[core]
sql_alchemy_conn = my_conn_string





or by creating a corresponding environment variable:

AIRFLOW__CORE__SQL_ALCHEMY_CONN=my_conn_string





You can also derive the connection string at run time by appending _cmd to the key like this:

[core]
sql_alchemy_conn_cmd = bash_command_to_run





But only three such configuration elements namely sql_alchemy_conn, broker_url and celery_result_backend can be fetched as a command. The idea behind this is to not store passwords on boxes in plain text files. The order of precedence is as follows -


	environment variable

	configuration in airflow.cfg

	command in airflow.cfg

	default






Setting up a Backend

If you want to take a real test drive of Airflow, you should consider
setting up a real database backend and switching to the LocalExecutor.

As Airflow was built to interact with its metadata using the great SqlAlchemy
library, you should be able to use any database backend supported as a
SqlAlchemy backend. We recommend using MySQL or Postgres.


Note

If you decide to use Postgres, we recommend using the psycopg2
driver and specifying it in your SqlAlchemy connection string.
Also note that since SqlAlchemy does not expose a way to target a
specific schema in the Postgres connection URI, you may
want to set a default schema for your role with a
command similar to ALTER ROLE username SET search_path = airflow, foobar;



Once you’ve setup your database to host Airflow, you’ll need to alter the
SqlAlchemy connection string located in your configuration file
$AIRFLOW_HOME/airflow.cfg. You should then also change the “executor”
setting to use “LocalExecutor”, an executor that can parallelize task
instances locally.

# initialize the database
airflow initdb








Connections

Airflow needs to know how to connect to your environment. Information
such as hostname, port, login and passwords to other systems and services is
handled in the Admin->Connection section of the UI. The pipeline code you
will author will reference the ‘conn_id’ of the Connection objects.

[image: _images/connections.png]
By default, Airflow will save the passwords for the connection in plain text
within the metadata database. The crypto package is highly recommended
during installation. The crypto package does require that your operating
system have libffi-dev installed.

Connections in Airflow pipelines can be created using environment variables.
The environment variable needs to have a prefix of AIRFLOW_CONN_ for
Airflow with the value in a URI format to use the connection properly. Please
see the Concepts documentation for more information on environment
variables and connections.




Scaling Out with Celery

CeleryExecutor is one of the ways you can scale out the number of workers. For this
to work, you need to setup a Celery backend (RabbitMQ, Redis, ...) and
change your airflow.cfg to point the executor parameter to
CeleryExecutor and provide the related Celery settings.

For more information about setting up a Celery broker, refer to the
exhaustive Celery documentation on the topic [http://docs.celeryproject.org/en/latest/getting-started/brokers/index.html].

Here are a few imperative requirements for your workers:


	airflow needs to be installed, and the CLI needs to be in the path

	Airflow configuration settings should be homogeneous across the cluster

	Operators that are executed on the worker need to have their dependencies
met in that context. For example, if you use the HiveOperator,
the hive CLI needs to be installed on that box, or if you use the
MySqlOperator, the required Python library needs to be available in
the PYTHONPATH somehow

	The worker needs to have access to its DAGS_FOLDER, and you need to
synchronize the filesystems by your own means. A common setup would be to
store your DAGS_FOLDER in a Git repository and sync it across machines using
Chef, Puppet, Ansible, or whatever you use to configure machines in your
environment. If all your boxes have a common mount point, having your
pipelines files shared there should work as well



To kick off a worker, you need to setup Airflow and kick off the worker
subcommand

airflow worker





Your worker should start picking up tasks as soon as they get fired in
its direction.

Note that you can also run “Celery Flower”, a web UI built on top of Celery,
to monitor your workers. You can use the shortcut command airflow flower
to start a Flower web server.




Scaling Out with Dask

DaskExecutor allows you to run Airflow tasks in a Dask Distributed cluster.

Dask clusters can be run on a single machine or on remote networks. For complete
details, consult the Distributed documentation [https://distributed.readthedocs.io/].

To create a cluster, first start a Scheduler:

# default settings for a local cluster
DASK_HOST=127.0.0.1
DASK_PORT=8786

dask-scheduler --host $DASK_HOST --port $DASK_PORT





Next start at least one Worker on any machine that can connect to the host:

dask-worker $DASK_HOST:$DASK_PORT





Edit your airflow.cfg to set your executor to DaskExecutor and provide
the Dask Scheduler address in the [dask] section.

Please note:


	Each Dask worker must be able to import Airflow and any dependencies you
require.

	Dask does not support queues. If an Airflow task was created with a queue, a
warning will be raised but the task will be submitted to the cluster.






Logs

Users can specify a logs folder in airflow.cfg. By default, it is in
the AIRFLOW_HOME directory.

In addition, users can supply a remote location for storing logs and log backups
in cloud storage. At this time, Amazon S3 and Google Cloud Storage are supported.
To enable this feature, airflow.cfg must be configured as in this example:

[core]
# Airflow can store logs remotely in AWS S3 or Google Cloud Storage. Users
# must supply a remote location URL (starting with either 's3://...' or
# 'gs://...') and an Airflow connection id that provides access to the storage
# location.
remote_base_log_folder = s3://my-bucket/path/to/logs
remote_log_conn_id = MyS3Conn
# Use server-side encryption for logs stored in S3
encrypt_s3_logs = False





Remote logging uses an existing Airflow connection to read/write logs. If you don’t
have a connection properly setup, this will fail. In the above example, Airflow will
try to use S3Hook('MyS3Conn').

In the Airflow Web UI, local logs take precedance over remote logs. If local logs
can not be found or accessed, the remote logs will be displayed. Note that logs
are only sent to remote storage once a task completes (including failure). In other
words, remote logs for running tasks are unavailable.




Scaling Out on Mesos (community contributed)

MesosExecutor allows you to schedule airflow tasks on a Mesos cluster.
For this to work, you need a running mesos cluster and you must perform the following
steps -


	Install airflow on a machine where web server and scheduler will run,
let’s refer to this as the “Airflow server”.

	On the Airflow server, install mesos python eggs from mesos downloads [http://open.mesosphere.com/downloads/mesos/].

	On the Airflow server, use a database (such as mysql) which can be accessed from mesos
slave machines and add configuration in airflow.cfg.

	Change your airflow.cfg to point executor parameter to
MesosExecutor and provide related Mesos settings.

	On all mesos slaves, install airflow. Copy the airflow.cfg from
Airflow server (so that it uses same sql alchemy connection).

	On all mesos slaves, run the following for serving logs:



airflow serve_logs






	On Airflow server, to start processing/scheduling DAGs on mesos, run:



airflow scheduler -p





Note: We need -p parameter to pickle the DAGs.

You can now see the airflow framework and corresponding tasks in mesos UI.
The logs for airflow tasks can be seen in airflow UI as usual.

For more information about mesos, refer to mesos documentation [http://mesos.apache.org/documentation/latest/].
For any queries/bugs on MesosExecutor, please contact @kapil-malik [https://github.com/kapil-malik].




Integration with systemd

Airflow can integrate with systemd based systems. This makes watching your
daemons easy as systemd can take care of restarting a daemon on failure.
In the scripts/systemd directory you can find unit files that
have been tested on Redhat based systems. You can copy those to
/usr/lib/systemd/system. It is assumed that Airflow will run under
airflow:airflow. If not (or if you are running on a non Redhat
based system) you probably need to adjust the unit files.

Environment configuration is picked up from /etc/sysconfig/airflow.
An example file is supplied. Make sure to specify the SCHEDULER_RUNS
variable in this file when you run the scheduler. You
can also define here, for example, AIRFLOW_HOME or AIRFLOW_CONFIG.




Integration with upstart

Airflow can integrate with upstart based systems. Upstart automatically starts all airflow services for which you
have a corresponding *.conf file in /etc/init upon system boot. On failure, upstart automatically restarts
the process (until it reaches re-spawn limit set in a *.conf file).

You can find sample upstart job files in the scripts/upstart directory. These files have been tested on
Ubuntu 14.04 LTS. You may have to adjust start on and stop on stanzas to make it work on other upstart
systems. Some of the possible options are listed in scripts/upstart/README.

Modify *.conf files as needed and copy to /etc/init directory. It is assumed that airflow will run
under airflow:airflow. Change setuid and setgid in *.conf files if you use other user/group

You can use initctl to manually start, stop, view status of the airflow process that has been
integrated with upstart

initctl airflow-webserver status








Test Mode

Airflow has a fixed set of “test mode” configuration options. You can load these
at any time by calling airflow.configuration.load_test_config() (note this
operation is not reversible!). However, some options (like the DAG_FOLDER) are
loaded before you have a chance to call load_test_config(). In order to eagerly load
the test configuration, set test_mode in airflow.cfg:

[tests]
unit_test_mode = True





Due to Airflow’s automatic environment variable expansion (see Setting Configuration Options),
you can also set the env var AIRFLOW__CORE__UNIT_TEST_MODE to temporarily overwrite
airflow.cfg.







          

      

      

    

  

    
      
          
            
  
UI / Screenshots

The Airflow UI make it easy to monitor and troubleshoot your data pipelines.
Here’s a quick overview of some of the features and visualizations you
can find in the Airflow UI.


DAGs View

List of the DAGs in your environment, and a set of shortcuts to useful pages.
You can see exactly how many tasks succeeded, failed, or are currently
running at a glance.



[image: _images/dags.png]





Tree View

A tree representation of the DAG that spans across time. If a pipeline is
late, you can quickly see where the different steps are and identify
the blocking ones.



[image: _images/tree.png]





Graph View

The graph view is perhaps the most comprehensive. Visualize your DAG’s
dependencies and their current status for a specific run.



[image: _images/graph.png]





Variable View

The variable view allows you to list, create, edit or delete the key-value pair
of a variable used during jobs. Value of a variable will be hidden if the key contains
any words in (‘password’, ‘secret’, ‘passwd’, ‘authorization’, ‘api_key’, ‘apikey’, ‘access_token’)
by default, but can be configured to show in clear-text.



[image: _images/variable_hidden.png]





Gantt Chart

The Gantt chart lets you analyse task duration and overlap. You can quickly
identify bottlenecks and where the bulk of the time is spent for specific
DAG runs.



[image: _images/gantt.png]





Task Duration

The duration of your different tasks over the past N runs. This view lets
you find outliers and quickly understand where the time is spent in your
DAG over many runs.



[image: _images/duration.png]





Code View

Transparency is everything. While the code for your pipeline is in source
control, this is a quick way to get to the code that generates the DAG and
provide yet more context.



[image: _images/code.png]





Task Instance Context Menu

From the pages seen above (tree view, graph view, gantt, ...), it is always
possible to click on a task instance, and get to this rich context menu
that can take you to more detailed metadata, and perform some actions.



[image: _images/context.png]






          

      

      

    

  

    
      
          
            
  
Concepts

The Airflow Platform is a tool for describing, executing, and monitoring
workflows.


Core Ideas


DAGs

In Airflow, a DAG – or a Directed Acyclic Graph – is a collection of all
the tasks you want to run, organized in a way that reflects their relationships
and dependencies.

For example, a simple DAG could consist of three tasks: A, B, and C. It could
say that A has to run successfully before B can run, but C can run anytime. It
could say that task A times out after 5 minutes, and B can be restarted up to 5
times in case it fails. It might also say that the workflow will run every night
at 10pm, but shouldn’t start until a certain date.

In this way, a DAG describes how you want to carry out your workflow; but
notice that we haven’t said anything about what we actually want to do! A, B,
and C could be anything. Maybe A prepares data for B to analyze while C sends an
email. Or perhaps A monitors your location so B can open your garage door while
C turns on your house lights. The important thing is that the DAG isn’t
concerned with what its constituent tasks do; its job is to make sure that
whatever they do happens at the right time, or in the right order, or with the
right handling of any unexpected issues.

DAGs are defined in standard Python files that are placed in Airflow’s
DAG_FOLDER. Airflow will execute the code in each file to dynamically build
the DAG objects. You can have as many DAGs as you want, each describing an
arbitrary number of tasks. In general, each one should correspond to a single
logical workflow.


Scope

Airflow will load any DAG object it can import from a DAGfile. Critically,
that means the DAG must appear in globals(). Consider the following two
DAGs. Only dag_1 will be loaded; the other one only appears in a local
scope.

dag_1 = DAG('this_dag_will_be_discovered')

def my_function()
    dag_2 = DAG('but_this_dag_will_not')

my_function()





Sometimes this can be put to good use. For example, a common pattern with
SubDagOperator is to define the subdag inside a function so that Airflow
doesn’t try to load it as a standalone DAG.




Default Arguments

If a dictionary of default_args is passed to a DAG, it will apply them to
any of its operators. This makes it easy to apply a common parameter to many operators without having to type it many times.

default_args=dict(
    start_date=datetime(2016, 1, 1),
    owner='Airflow')

dag = DAG('my_dag', default_args=default_args)
op = DummyOperator(task_id='dummy', dag=dag)
print(op.owner) # Airflow








Context Manager

Added in Airflow 1.8

DAGs can be used as context managers to automatically assign new operators to that DAG.

with DAG('my_dag', start_date=datetime(2016, 1, 1)) as dag:
    op = DummyOperator('op')

op.dag is dag # True










Operators

While DAGs describe how to run a workflow, Operators determine what
actually gets done.

An operator describes a single task in a workflow. Operators are usually (but
not always) atomic, meaning they can stand on their own and don’t need to share
resources with any other operators. The DAG will make sure that operators run in
the correct certain order; other than those dependencies, operators generally
run independently. In fact, they may run on two completely different machines.

This is a subtle but very important point: in general, if two operators need to
share information, like a filename or small amount of data, you should consider
combining them into a single operator. If it absolutely can’t be avoided,
Airflow does have a feature for operator cross-communication called XCom that is
described elsewhere in this document.

Airflow provides operators for many common tasks, including:


	BashOperator - executes a bash command

	PythonOperator - calls an arbitrary Python function

	EmailOperator - sends an email

	HTTPOperator - sends an HTTP request

	MySqlOperator, SqliteOperator, PostgresOperator, MsSqlOperator, OracleOperator, JdbcOperator, etc. - executes a SQL command

	Sensor - waits for a certain time, file, database row, S3 key, etc...



In addition to these basic building blocks, there are many more specific
operators: DockerOperator, HiveOperator, S3FileTransferOperator,
PrestoToMysqlOperator, SlackOperator... you get the idea!

The airflow/contrib/ directory contains yet more operators built by the
community. These operators aren’t always as complete or well-tested as those in
the main distribution, but allow users to more easily add new functionality to
the platform.

Operators are only loaded by Airflow if they are assigned to a DAG.


DAG Assignment

Added in Airflow 1.8

Operators do not have to be assigned to DAGs immediately (previously dag was
a required argument). However, once an operator is assigned to a DAG, it can not
be transferred or unassigned. DAG assignment can be done explicitly when the
operator is created, through deferred assignment, or even inferred from other
operators.

dag = DAG('my_dag', start_date=datetime(2016, 1, 1))

# sets the DAG explicitly
explicit_op = DummyOperator(task_id='op1', dag=dag)

# deferred DAG assignment
deferred_op = DummyOperator(task_id='op2')
deferred_op.dag = dag

# inferred DAG assignment (linked operators must be in the same DAG)
inferred_op = DummyOperator(task_id='op3')
inferred_op.set_upstream(deferred_op)








Bitshift Composition

Added in Airflow 1.8

Traditionally, operator relationships are set with the set_upstream() and
set_downstream() methods. In Airflow 1.8, this can be done with the Python
bitshift operators >> and <<. The following four statements are all
functionally equivalent:

op1 >> op2
op1.set_downstream(op2)

op2 << op1
op2.set_upstream(op1)





When using the bitshift to compose operators, the relationship is set in the
direction that the bitshift operator points. For example, op1 >> op2 means
that op1 runs first and op2 runs second. Multiple operators can be
composed – keep in mind the chain is executed left-to-right and the rightmost
object is always returned. For example:

op1 >> op2 >> op3 << op4





is equivalent to:

op1.set_downstream(op2)
op2.set_downstream(op3)
op3.set_upstream(op4)





For convenience, the bitshift operators can also be used with DAGs. For example:

dag >> op1 >> op2





is equivalent to:

op1.dag = dag
op1.set_downstream(op2)





We can put this all together to build a simple pipeline:

with DAG('my_dag', start_date=datetime(2016, 1, 1)) as dag:
    (
        DummyOperator(task_id='dummy_1')
        >> BashOperator(
            task_id='bash_1',
            bash_command='echo "HELLO!"')
        >> PythonOperator(
            task_id='python_1',
            python_callable=lambda: print("GOODBYE!"))
    )










Tasks

Once an operator is instantiated, it is referred to as a “task”. The
instantiation defines specific values when calling the abstract operator, and
the parameterized task becomes a node in a DAG.




Task Instances

A task instance represents a specific run of a task and is characterized as the
combination of a dag, a task, and a point in time. Task instances also have an
indicative state, which could be “running”, “success”, “failed”, “skipped”, “up
for retry”, etc.




Workflows

You’re now familiar with the core building blocks of Airflow.
Some of the concepts may sound very similar, but the vocabulary can
be conceptualized like this:


	DAG: a description of the order in which work should take place

	Operator: a class that acts as a template for carrying out some work

	Task: a parameterized instance of an operator

	Task Instance: a task that 1) has been assigned to a DAG and 2) has a
state associated with a specific run of the DAG



By combining DAGs and Operators to create TaskInstances, you can
build complex workflows.






Additional Functionality

In addition to the core Airflow objects, there are a number of more complex
features that enable behaviors like limiting simultaneous access to resources,
cross-communication, conditional execution, and more.


Hooks

Hooks are interfaces to external platforms and databases like Hive, S3,
MySQL, Postgres, HDFS, and Pig. Hooks implement a common interface when
possible, and act as a building block for operators. They also use
the airflow.models.Connection model to retrieve hostnames
and authentication information. Hooks keep authentication code and
information out of pipelines, centralized in the metadata database.

Hooks are also very useful on their own to use in Python scripts,
Airflow airflow.operators.PythonOperator, and in interactive environments
like iPython or Jupyter Notebook.




Pools

Some systems can get overwhelmed when too many processes hit them at the same
time. Airflow pools can be used to limit the execution parallelism on
arbitrary sets of tasks. The list of pools is managed in the UI
(Menu -> Admin -> Pools) by giving the pools a name and assigning
it a number of worker slots. Tasks can then be associated with
one of the existing pools by using the pool parameter when
creating tasks (i.e., instantiating operators).

aggregate_db_message_job = BashOperator(
    task_id='aggregate_db_message_job',
    execution_timeout=timedelta(hours=3),
    pool='ep_data_pipeline_db_msg_agg',
    bash_command=aggregate_db_message_job_cmd,
    dag=dag)
aggregate_db_message_job.set_upstream(wait_for_empty_queue)





The pool parameter can
be used in conjunction with priority_weight to define priorities
in the queue, and which tasks get executed first as slots open up in the
pool. The default priority_weight is 1, and can be bumped to any
number. When sorting the queue to evaluate which task should be executed
next, we use the priority_weight, summed up with all of the
priority_weight values from tasks downstream from this task. You can
use this to bump a specific important task and the whole path to that task
gets prioritized accordingly.

Tasks will be scheduled as usual while the slots fill up. Once capacity is
reached, runnable tasks get queued and their state will show as such in the
UI. As slots free up, queued tasks start running based on the
priority_weight (of the task and its descendants).

Note that by default tasks aren’t assigned to any pool and their
execution parallelism is only limited to the executor’s setting.




Connections

The connection information to external systems is stored in the Airflow
metadata database and managed in the UI (Menu -> Admin -> Connections)
A conn_id is defined there and hostname / login / password / schema
information attached to it. Airflow pipelines can simply refer to the
centrally managed conn_id without having to hard code any of this
information anywhere.

Many connections with the same conn_id can be defined and when that
is the case, and when the hooks uses the get_connection method
from BaseHook, Airflow will choose one connection randomly, allowing
for some basic load balancing and fault tolerance when used in conjunction
with retries.

Airflow also has the ability to reference connections via environment
variables from the operating system. The environment variable needs to be
prefixed with AIRFLOW_CONN_ to be considered a connection. When
referencing the connection in the Airflow pipeline, the conn_id should
be the name of the variable without the prefix. For example, if the conn_id
is named postgres_master the environment variable should be named
AIRFLOW_CONN_POSTGRES_MASTER (note that the environment variable must be
all uppercase). Airflow assumes the value returned from the environment
variable to be in a URI format (e.g.
postgres://user:password@localhost:5432/master or s3://accesskey:secretkey@S3).




Queues

When using the CeleryExecutor, the celery queues that tasks are sent to
can be specified. queue is an attribute of BaseOperator, so any
task can be assigned to any queue. The default queue for the environment
is defined in the airflow.cfg‘s celery -> default_queue. This defines
the queue that tasks get assigned to when not specified, as well as which
queue Airflow workers listen to when started.

Workers can listen to one or multiple queues of tasks. When a worker is
started (using the command airflow worker), a set of comma delimited
queue names can be specified (e.g. airflow worker -q spark). This worker
will then only pick up tasks wired to the specified queue(s).

This can be useful if you need specialized workers, either from a
resource perspective (for say very lightweight tasks where one worker
could take thousands of tasks without a problem), or from an environment
perspective (you want a worker running from within the Spark cluster
itself because it needs a very specific environment and security rights).




XComs

XComs let tasks exchange messages, allowing more nuanced forms of control and
shared state. The name is an abbreviation of “cross-communication”. XComs are
principally defined by a key, value, and timestamp, but also track attributes
like the task/DAG that created the XCom and when it should become visible. Any
object that can be pickled can be used as an XCom value, so users should make
sure to use objects of appropriate size.

XComs can be “pushed” (sent) or “pulled” (received). When a task pushes an
XCom, it makes it generally available to other tasks. Tasks can push XComs at
any time by calling the xcom_push() method. In addition, if a task returns
a value (either from its Operator’s execute() method, or from a
PythonOperator’s python_callable function), then an XCom containing that
value is automatically pushed.

Tasks call xcom_pull() to retrieve XComs, optionally applying filters
based on criteria like key, source task_ids, and source dag_id. By
default, xcom_pull() filters for the keys that are automatically given to
XComs when they are pushed by being returned from execute functions (as
opposed to XComs that are pushed manually).

If xcom_pull is passed a single string for task_ids, then the most
recent XCom value from that task is returned; if a list of task_ids is
passed, then a correpsonding list of XCom values is returned.

# inside a PythonOperator called 'pushing_task'
def push_function():
    return value

# inside another PythonOperator where provide_context=True
def pull_function(**context):
    value = context['task_instance'].xcom_pull(task_ids='pushing_task')





It is also possible to pull XCom directly in a template, here’s an example
of what this may look like:

SELECT * FROM {{ task_instance.xcom_pull(task_ids='foo', key='table_name') }}





Note that XComs are similar to Variables, but are specifically designed
for inter-task communication rather than global settings.




Variables

Variables are a generic way to store and retrieve arbitrary content or
settings as a simple key value store within Airflow. Variables can be
listed, created, updated and deleted from the UI (Admin -> Variables),
code or CLI. While your pipeline code definition and most of your constants
and variables should be defined in code and stored in source control,
it can be useful to have some variables or configuration items
accessible and modifiable through the UI.

from airflow.models import Variable
foo = Variable.get("foo")
bar = Variable.get("bar", deserialize_json=True)





The second call assumes json content and will be deserialized into
bar. Note that Variable is a sqlalchemy model and can be used
as such.




Branching

Sometimes you need a workflow to branch, or only go down a certain path
based on an arbitrary condition which is typically related to something
that happened in an upstream task. One way to do this is by using the
BranchPythonOperator.

The BranchPythonOperator is much like the PythonOperator except that it
expects a python_callable that returns a task_id. The task_id returned
is followed, and all of the other paths are skipped.
The task_id returned by the Python function has to be referencing a task
directly downstream from the BranchPythonOperator task.

Note that using tasks with depends_on_past=True downstream from
BranchPythonOperator is logically unsound as skipped status
will invariably lead to block tasks that depend on their past successes.
skipped states propagates where all directly upstream tasks are
skipped.

If you want to skip some tasks, keep in mind that you can’t have an empty
path, if so make a dummy task.

like this, the dummy task “branch_false” is skipped

[image: _images/branch_good.png]
Not like this, where the join task is skipped

[image: _images/branch_bad.png]



SubDAGs

SubDAGs are perfect for repeating patterns. Defining a function that returns a
DAG object is a nice design pattern when using Airflow.

Airbnb uses the stage-check-exchange pattern when loading data. Data is staged
in a temporary table, after which data quality checks are performed against
that table. Once the checks all pass the partition is moved into the production
table.

As another example, consider the following DAG:

[image: _images/subdag_before.png]
We can combine all of the parallel task-* operators into a single SubDAG,
so that the resulting DAG resembles the following:

[image: _images/subdag_after.png]
Note that SubDAG operators should contain a factory method that returns a DAG
object. This will prevent the SubDAG from being treated like a separate DAG in
the main UI. For example:

#dags/subdag.py
from airflow.models import DAG
from airflow.operators.dummy_operator import DummyOperator


# Dag is returned by a factory method
def sub_dag(parent_dag_name, child_dag_name, start_date, schedule_interval):
  dag = DAG(
    '%s.%s' % (parent_dag_name, child_dag_name),
    schedule_interval=schedule_interval,
    start_date=start_date,
  )

  dummy_operator = DummyOperator(
    task_id='dummy_task',
    dag=dag,
  )

  return dag





This SubDAG can then be referenced in your main DAG file:

# main_dag.py
from datetime import datetime, timedelta
from airflow.models import DAG
from airflow.operators.subdag_operator import SubDagOperator
from dags.subdag import sub_dag


PARENT_DAG_NAME = 'parent_dag'
CHILD_DAG_NAME = 'child_dag'

main_dag = DAG(
  dag_id=PARENT_DAG_NAME,
  schedule_interval=timedelta(hours=1),
  start_date=datetime(2016, 1, 1)
)

sub_dag = SubDagOperator(
  subdag=sub_dag(PARENT_DAG_NAME, CHILD_DAG_NAME, main_dag.start_date,
                 main_dag.schedule_interval),
  task_id=CHILD_DAG_NAME,
  dag=main_dag,
)





You can zoom into a SubDagOperator from the graph view of the main DAG to show
the tasks contained within the SubDAG:

[image: _images/subdag_zoom.png]
Some other tips when using SubDAGs:


	by convention, a SubDAG’s dag_id should be prefixed by its parent and
a dot. As in parent.child

	share arguments between the main DAG and the SubDAG by passing arguments to
the SubDAG operator (as demonstrated above)

	SubDAGs must have a schedule and be enabled. If the SubDAG’s schedule is
set to None or @once, the SubDAG will succeed without having done
anything

	clearing a SubDagOperator also clears the state of the tasks within

	marking success on a SubDagOperator does not affect the state of the tasks
within

	refrain from using depends_on_past=True in tasks within the SubDAG as
this can be confusing

	it is possible to specify an executor for the SubDAG. It is common to use
the SequentialExecutor if you want to run the SubDAG in-process and
effectively limit its parallelism to one. Using LocalExecutor can be
problematic as it may over-subscribe your worker, running multiple tasks in
a single slot



See airflow/example_dags for a demonstration.




SLAs

Service Level Agreements, or time by which a task or DAG should have
succeeded, can be set at a task level as a timedelta. If
one or many instances have not succeeded by that time, an alert email is sent
detailing the list of tasks that missed their SLA. The event is also recorded
in the database and made available in the web UI under Browse->Missed SLAs
where events can be analyzed and documented.




Trigger Rules

Though the normal workflow behavior is to trigger tasks when all their
directly upstream tasks have succeeded, Airflow allows for more complex
dependency settings.

All operators have a trigger_rule argument which defines the rule by which
the generated task get triggered. The default value for trigger_rule is
all_success and can be defined as “trigger this task when all directly
upstream tasks have succeeded”. All other rules described here are based
on direct parent tasks and are values that can be passed to any operator
while creating tasks:


	all_success: (default) all parents have succeeded

	all_failed: all parents are in a failed or upstream_failed state

	all_done: all parents are done with their execution

	one_failed: fires as soon as at least one parent has failed, it does not wait for all parents to be done

	one_success: fires as soon as at least one parent succeeds, it does not wait for all parents to be done

	dummy: dependencies are just for show, trigger at will



Note that these can be used in conjunction with depends_on_past (boolean)
that, when set to True, keeps a task from getting triggered if the
previous schedule for the task hasn’t succeeded.




Latest Run Only

Standard workflow behavior involves running a series of tasks for a
particular date/time range. Some workflows, however, perform tasks that
are independent of run time but need to be run on a schedule, much like a
standard cron job. In these cases, backfills or running jobs missed during
a pause just wastes CPU cycles.

For situations like this, you can use the LatestOnlyOperator to skip
tasks that are not being run during the most recent scheduled run for a
DAG. The LatestOnlyOperator skips all immediate downstream tasks, and
itself, if the time right now is not between its execution_time and the
next scheduled execution_time.

One must be aware of the interaction between skipped tasks and trigger
rules. Skipped tasks will cascade through trigger rules all_success
and all_failed but not all_done, one_failed, one_success,
and dummy. If you would like to use the LatestOnlyOperator with
trigger rules that do not cascade skips, you will need to ensure that the
LatestOnlyOperator is directly upstream of the task you would like
to skip.

It is possible, through use of trigger rules to mix tasks that should run
in the typical date/time dependent mode and those using the
LatestOnlyOperator.

For example, consider the following dag:

#dags/latest_only_with_trigger.py
import datetime as dt

from airflow.models import DAG
from airflow.operators.dummy_operator import DummyOperator
from airflow.operators.latest_only_operator import LatestOnlyOperator
from airflow.utils.trigger_rule import TriggerRule


dag = DAG(
    dag_id='latest_only_with_trigger',
    schedule_interval=dt.timedelta(hours=4),
    start_date=dt.datetime(2016, 9, 20),
)

latest_only = LatestOnlyOperator(task_id='latest_only', dag=dag)

task1 = DummyOperator(task_id='task1', dag=dag)
task1.set_upstream(latest_only)

task2 = DummyOperator(task_id='task2', dag=dag)

task3 = DummyOperator(task_id='task3', dag=dag)
task3.set_upstream([task1, task2])

task4 = DummyOperator(task_id='task4', dag=dag,
                      trigger_rule=TriggerRule.ALL_DONE)
task4.set_upstream([task1, task2])





In the case of this dag, the latest_only task will show up as skipped
for all runs except the latest run. task1 is directly downstream of
latest_only and will also skip for all runs except the latest.
task2 is entirely independent of latest_only and will run in all
scheduled periods. task3 is downstream of task1 and task2 and
because of the default trigger_rule being all_success will receive
a cascaded skip from task1. task4 is downstream of task1 and
task2 but since its trigger_rule is set to all_done it will
trigger as soon as task1 has been skipped (a valid completion state)
and task2 has succeeded.

[image: _images/latest_only_with_trigger.png]



Zombies & Undeads

Task instances die all the time, usually as part of their normal life cycle,
but sometimes unexpectedly.

Zombie tasks are characterized by the absence
of an heartbeat (emitted by the job periodically) and a running status
in the database. They can occur when a worker node can’t reach the database,
when Airflow processes are killed externally, or when a node gets rebooted
for instance. Zombie killing is performed periodically by the scheduler’s
process.

Undead processes are characterized by the existence of a process and a matching
heartbeat, but Airflow isn’t aware of this task as running in the database.
This mismatch typically occurs as the state of the database is altered,
most likely by deleting rows in the “Task Instances” view in the UI.
Tasks are instructed to verify their state as part of the heartbeat routine,
and terminate themselves upon figuring out that they are in this “undead”
state.




Cluster Policy

Your local airflow settings file can define a policy function that
has the ability to mutate task attributes based on other task or DAG
attributes. It receives a single argument as a reference to task objects,
and is expected to alter its attributes.

For example, this function could apply a specific queue property when
using a specific operator, or enforce a task timeout policy, making sure
that no tasks run for more than 48 hours. Here’s an example of what this
may look like inside your airflow_settings.py:

def policy(task):
    if task.__class__.__name__ == 'HivePartitionSensor':
        task.queue = "sensor_queue"
    if task.timeout > timedelta(hours=48):
        task.timeout = timedelta(hours=48)








Documentation & Notes

It’s possible to add documentation or notes to your dags & task objects that
become visible in the web interface (“Graph View” for dags, “Task Details” for
tasks). There are a set of special task attributes that get rendered as rich
content if defined:







	attribute
	rendered to




	doc
	monospace


	doc_json
	json


	doc_yaml
	yaml


	doc_md
	markdown


	doc_rst
	reStructuredText





Please note that for dags, dag_md is the only attribute interpreted.

This is especially useful if your tasks are built dynamically from
configuration files, it allows you to expose the configuration that led
to the related tasks in Airflow.

"""
### My great DAG
"""

dag = DAG('my_dag', default_args=default_args)
dag.doc_md = __doc__

t = BashOperator("foo", dag=dag)
t.doc_md = """\
#Title"
Here's a [url](www.airbnb.com)
"""





This content will get rendered as markdown respectively in the “Graph View” and
“Task Details” pages.




Jinja Templating

Airflow leverages the power of
Jinja Templating [http://jinja.pocoo.org/docs/dev/] and this can be a
powerful tool to use in combination with macros (see the Macros section).

For example, say you want to pass the execution date as an environment variable
to a Bash script using the BashOperator.

# The execution date as YYYY-MM-DD
date = "{{ ds }}"
t = BashOperator(
    task_id='test_env',
    bash_command='/tmp/test.sh ',
    dag=dag,
    env={'EXECUTION_DATE': date})





Here, {{ ds }} is a macro, and because the env parameter of the
BashOperator is templated with Jinja, the execution date will be available
as an environment variable named EXECUTION_DATE in your Bash script.

You can use Jinja templating with every parameter that is marked as “templated”
in the documentation.






Packaged dags

While often you will specify dags in a single .py file it might sometimes
be required to combine dag and its dependencies. For example, you might want
to combine several dags together to version them together or you might want
to manage them together or you might need an extra module that is not available
by default on the system you are running airflow on. To allow this you can create
a zip file that contains the dag(s) in the root of the zip file and have the extra
modules unpacked in directories.

For instance you can create a zip file that looks like this:

my_dag1.py
my_dag2.py
package1/__init__.py
package1/functions.py





Airflow will scan the zip file and try to load my_dag1.py and my_dag2.py.
It will not go into subdirectories as these are considered to be potential
packages.

In case you would like to add module dependencies to your DAG you basically would
do the same, but then it is more to use a virtualenv and pip.

virtualenv zip_dag
source zip_dag/bin/activate

mkdir zip_dag_contents
cd zip_dag_contents

pip install --install-option="--install-lib=$PWD" my_useful_package
cp ~/my_dag.py .

zip -r zip_dag.zip *






Note

the zip file will be inserted at the beginning of module search list
(sys.path) and as such it will be available to any other code that resides
within the same interpreter.




Note

packaged dags cannot be used with pickling turned on.




Note

packaged dags cannot contain dynamic libraries (eg. libz.so) these need
to be available on the system if a module needs those. In other words only
pure python modules can be packaged.









          

      

      

    

  

    
      
          
            
  
Data Profiling

Part of being productive with data is having the right weapons to
profile the data you are working with. Airflow provides a simple query
interface to write SQL and get results quickly, and a charting application
letting you visualize data.


Adhoc Queries

The adhoc query UI allows for simple SQL interactions with the database
connections registered in Airflow.

[image: _images/adhoc.png]



Charts

A simple UI built on top of flask-admin and highcharts allows building
data visualizations and charts easily. Fill in a form with a label, SQL,
chart type, pick a source database from your environment’s connectons,
select a few other options, and save it for later use.

You can even use the same templating and macros available when writing
airflow pipelines, parameterizing your queries and modifying parameters
directly in the URL.

These charts are basic, but they’re easy to create, modify and share.


Chart Screenshot

[image: _images/chart.png]





Chart Form Screenshot

[image: _images/chart_form.png]








          

      

      

    

  

    
      
          
            
  
Command Line Interface

Airflow has a very rich command line interface that allows for
many types of operation on a DAG, starting services, and supporting
development and testing.

usage: airflow [-h]
               {resetdb,render,variables,connections,pause,task_failed_deps,version,trigger_dag,initdb,test,unpause,dag_state,run,list_tasks,backfill,list_dags,kerberos,worker,webserver,flower,scheduler,task_state,pool,serve_logs,clear,upgradedb}
               ...






Positional Arguments





	
subcommand
	Possible choices: resetdb, render, variables, connections, pause, task_failed_deps, version, trigger_dag, initdb, test, unpause, dag_state, run, list_tasks, backfill, list_dags, kerberos, worker, webserver, flower, scheduler, task_state, pool, serve_logs, clear, upgradedb

sub-command help









Sub-commands:


resetdb

Burn down and rebuild the metadata database

airflow resetdb [-h] [-y]






Named Arguments





	
-y, –yes
	Do not prompt to confirm reset. Use with care!

Default: False











render

Render a task instance’s template(s)

airflow render [-h] [-sd SUBDIR] dag_id task_id execution_date






Positional Arguments





	
dag_id
	The id of the dag

	
task_id
	The id of the task

	
execution_date
	The execution date of the DAG







Named Arguments





	
-sd, –subdir
	File location or directory from which to look for the dag

Default: /home/docs/airflow/dags











variables

CRUD operations on variables

airflow variables [-h] [-s KEY VAL] [-g KEY] [-j] [-d VAL] [-i FILEPATH]
                  [-e FILEPATH] [-x KEY]






Named Arguments





	
-s, –set
	Set a variable

	
-g, –get
	Get value of a variable

	
-j, –json
	Deserialize JSON variable

Default: False



	
-d, –default
	Default value returned if variable does not exist

	
-i, –import
	Import variables from JSON file

	
-e, –export
	Export variables to JSON file

	
-x, –delete
	Delete a variable









connections

List/Add/Delete connections

airflow connections [-h] [-l] [-a] [-d] [--conn_id CONN_ID]
                    [--conn_uri CONN_URI] [--conn_extra CONN_EXTRA]






Named Arguments





	
-l, –list
	List all connections

Default: False



	
-a, –add
	Add a connection

Default: False



	
-d, –delete
	Delete a connection

Default: False



	
–conn_id
	Connection id, required to add/delete a connection

	
–conn_uri
	Connection URI, required to add a connection

	
–conn_extra
	Connection Extra field, optional when adding a connection









pause

Pause a DAG

airflow pause [-h] [-sd SUBDIR] dag_id






Positional Arguments





	
dag_id
	The id of the dag







Named Arguments





	
-sd, –subdir
	File location or directory from which to look for the dag

Default: /home/docs/airflow/dags











task_failed_deps

Returns the unmet dependencies for a task instance from the perspective of the scheduler. In other words, why a task instance doesn’t get scheduled and then queued by the scheduler, and then run by an executor).

airflow task_failed_deps [-h] [-sd SUBDIR] dag_id task_id execution_date






Positional Arguments





	
dag_id
	The id of the dag

	
task_id
	The id of the task

	
execution_date
	The execution date of the DAG







Named Arguments





	
-sd, –subdir
	File location or directory from which to look for the dag

Default: /home/docs/airflow/dags











version

Show the version

airflow version [-h]








trigger_dag

Trigger a DAG run

airflow trigger_dag [-h] [-sd SUBDIR] [-r RUN_ID] [-c CONF] [-e EXEC_DATE]
                    dag_id






Positional Arguments





	
dag_id
	The id of the dag







Named Arguments





	
-sd, –subdir
	File location or directory from which to look for the dag

Default: /home/docs/airflow/dags



	
-r, –run_id
	Helps to identify this run

	
-c, –conf
	JSON string that gets pickled into the DagRun’s conf attribute

	
-e, –exec_date


	 	The execution date of the DAG









initdb

Initialize the metadata database

airflow initdb [-h]








test

Test a task instance. This will run a task without checking for dependencies or recording it’s state in the database.

airflow test [-h] [-sd SUBDIR] [-dr] [-tp TASK_PARAMS]
             dag_id task_id execution_date






Positional Arguments





	
dag_id
	The id of the dag

	
task_id
	The id of the task

	
execution_date
	The execution date of the DAG







Named Arguments





	
-sd, –subdir
	File location or directory from which to look for the dag

Default: /home/docs/airflow/dags



	
-dr, –dry_run
	Perform a dry run

Default: False



	
-tp, –task_params


	 	Sends a JSON params dict to the task









unpause

Resume a paused DAG

airflow unpause [-h] [-sd SUBDIR] dag_id






Positional Arguments





	
dag_id
	The id of the dag







Named Arguments





	
-sd, –subdir
	File location or directory from which to look for the dag

Default: /home/docs/airflow/dags











dag_state

Get the status of a dag run

airflow dag_state [-h] [-sd SUBDIR] dag_id execution_date






Positional Arguments





	
dag_id
	The id of the dag

	
execution_date
	The execution date of the DAG







Named Arguments





	
-sd, –subdir
	File location or directory from which to look for the dag

Default: /home/docs/airflow/dags











run

Run a single task instance

airflow run [-h] [-sd SUBDIR] [-m] [-f] [--pool POOL] [--cfg_path CFG_PATH]
            [-l] [-A IGNORE_ALL_DEPENDENCIES] [-i] [-I] [--ship_dag]
            [-p PICKLE]
            dag_id task_id execution_date






Positional Arguments





	
dag_id
	The id of the dag

	
task_id
	The id of the task

	
execution_date
	The execution date of the DAG







Named Arguments





	
-sd, –subdir
	File location or directory from which to look for the dag

Default: /home/docs/airflow/dags



	
-m, –mark_success


	 	Mark jobs as succeeded without running them

Default: False



	
-f, –force
	Ignore previous task instance state, rerun regardless if task already succeeded/failed

Default: False



	
–pool
	Resource pool to use

	
–cfg_path
	Path to config file to use instead of airflow.cfg

	
-l, –local
	Run the task using the LocalExecutor

Default: False



	
-A, –ignore_all_dependencies


	 	Ignores all non-critical dependencies, including ignore_ti_state and ignore_task_depsstore_true

	
-i, –ignore_dependencies


	 	Ignore task-specific dependencies, e.g. upstream, depends_on_past, and retry delay dependencies

Default: False



	
-I, –ignore_depends_on_past


	 	Ignore depends_on_past dependencies (but respect upstream dependencies)

Default: False



	
–ship_dag
	Pickles (serializes) the DAG and ships it to the worker

Default: False



	
-p, –pickle
	Serialized pickle object of the entire dag (used internally)









list_tasks

List the tasks within a DAG

airflow list_tasks [-h] [-t] [-sd SUBDIR] dag_id






Positional Arguments





	
dag_id
	The id of the dag







Named Arguments





	
-t, –tree
	Tree view

Default: False



	
-sd, –subdir
	File location or directory from which to look for the dag

Default: /home/docs/airflow/dags











backfill

Run subsections of a DAG for a specified date range

airflow backfill [-h] [-t TASK_REGEX] [-s START_DATE] [-e END_DATE] [-m] [-l]
                 [-x] [-a] [-i] [-I] [-sd SUBDIR] [--pool POOL] [-dr]
                 dag_id






Positional Arguments





	
dag_id
	The id of the dag







Named Arguments





	
-t, –task_regex


	 	The regex to filter specific task_ids to backfill (optional)

	
-s, –start_date


	 	Override start_date YYYY-MM-DD

	
-e, –end_date
	Override end_date YYYY-MM-DD

	
-m, –mark_success


	 	Mark jobs as succeeded without running them

Default: False



	
-l, –local
	Run the task using the LocalExecutor

Default: False



	
-x, –donot_pickle


	 	Do not attempt to pickle the DAG object to send over to the workers, just tell the workers to run their version of the code.

Default: False



	
-a, –include_adhoc


	 	Include dags with the adhoc parameter.

Default: False



	
-i, –ignore_dependencies


	 	Skip upstream tasks, run only the tasks matching the regexp. Only works in conjunction with task_regex

Default: False



	
-I, –ignore_first_depends_on_past


	 	Ignores depends_on_past dependencies for the first set of tasks only (subsequent executions in the backfill DO respect depends_on_past).

Default: False



	
-sd, –subdir
	File location or directory from which to look for the dag

Default: /home/docs/airflow/dags



	
–pool
	Resource pool to use

	
-dr, –dry_run
	Perform a dry run

Default: False











list_dags

List all the DAGs

airflow list_dags [-h] [-sd SUBDIR] [-r]






Named Arguments





	
-sd, –subdir
	File location or directory from which to look for the dag

Default: /home/docs/airflow/dags



	
-r, –report
	Show DagBag loading report

Default: False











kerberos

Start a kerberos ticket renewer

airflow kerberos [-h] [-kt [KEYTAB]] [--pid [PID]] [-D] [--stdout STDOUT]
                 [--stderr STDERR] [-l LOG_FILE]
                 [principal]






Positional Arguments





	
principal
	kerberos principal

Default: airflow









Named Arguments





	
-kt, –keytab
	keytab

Default: airflow.keytab



	
–pid
	PID file location

	
-D, –daemon
	Daemonize instead of running in the foreground

Default: False



	
–stdout
	Redirect stdout to this file

	
–stderr
	Redirect stderr to this file

	
-l, –log-file
	Location of the log file









worker

Start a Celery worker node

airflow worker [-h] [-p] [-q QUEUES] [-c CONCURRENCY] [--pid [PID]] [-D]
               [--stdout STDOUT] [--stderr STDERR] [-l LOG_FILE]






Named Arguments





	
-p, –do_pickle


	 	Attempt to pickle the DAG object to send over to the workers, instead of letting workers run their version of the code.

Default: False



	
-q, –queues
	Comma delimited list of queues to serve

Default: default



	
-c, –concurrency


	 	The number of worker processes

Default: 16



	
–pid
	PID file location

	
-D, –daemon
	Daemonize instead of running in the foreground

Default: False



	
–stdout
	Redirect stdout to this file

	
–stderr
	Redirect stderr to this file

	
-l, –log-file
	Location of the log file









webserver

Start a Airflow webserver instance

airflow webserver [-h] [-p PORT] [-w WORKERS]
                  [-k {sync,eventlet,gevent,tornado}] [-t WORKER_TIMEOUT]
                  [-hn HOSTNAME] [--pid [PID]] [-D] [--stdout STDOUT]
                  [--stderr STDERR] [-A ACCESS_LOGFILE] [-E ERROR_LOGFILE]
                  [-l LOG_FILE] [--ssl_cert SSL_CERT] [--ssl_key SSL_KEY] [-d]






Named Arguments





	
-p, –port
	The port on which to run the server

Default: 8080



	
-w, –workers
	Number of workers to run the webserver on

Default: 4



	
-k, –workerclass


	 	Possible choices: sync, eventlet, gevent, tornado

The worker class to use for Gunicorn

Default: sync



	
-t, –worker_timeout


	 	The timeout for waiting on webserver workers

Default: 120



	
-hn, –hostname


	 	Set the hostname on which to run the web server

Default: 0.0.0.0



	
–pid
	PID file location

	
-D, –daemon
	Daemonize instead of running in the foreground

Default: False



	
–stdout
	Redirect stdout to this file

	
–stderr
	Redirect stderr to this file

	
-A, –access_logfile


	 	The logfile to store the webserver access log. Use ‘-‘ to print to stderr.

Default: -



	
-E, –error_logfile


	 	The logfile to store the webserver error log. Use ‘-‘ to print to stderr.

Default: -



	
-l, –log-file
	Location of the log file

	
–ssl_cert
	Path to the SSL certificate for the webserver

	
–ssl_key
	Path to the key to use with the SSL certificate

	
-d, –debug
	Use the server that ships with Flask in debug mode

Default: False











flower

Start a Celery Flower

airflow flower [-h] [-hn HOSTNAME] [-p PORT] [-fc FLOWER_CONF] [-a BROKER_API]
               [--pid [PID]] [-D] [--stdout STDOUT] [--stderr STDERR]
               [-l LOG_FILE]






Named Arguments





	
-hn, –hostname


	 	Set the hostname on which to run the server

Default: 0.0.0.0



	
-p, –port
	The port on which to run the server

Default: 5555



	
-fc, –flower_conf


	 	Configuration file for flower

	
-a, –broker_api


	 	Broker api

	
–pid
	PID file location

	
-D, –daemon
	Daemonize instead of running in the foreground

Default: False



	
–stdout
	Redirect stdout to this file

	
–stderr
	Redirect stderr to this file

	
-l, –log-file
	Location of the log file









scheduler

Start a scheduler instance

airflow scheduler [-h] [-d DAG_ID] [-sd SUBDIR] [-r RUN_DURATION]
                  [-n NUM_RUNS] [-p] [--pid [PID]] [-D] [--stdout STDOUT]
                  [--stderr STDERR] [-l LOG_FILE]






Named Arguments





	
-d, –dag_id
	The id of the dag to run

	
-sd, –subdir
	File location or directory from which to look for the dag

Default: /home/docs/airflow/dags



	
-r, –run-duration


	 	Set number of seconds to execute before exiting

	
-n, –num_runs
	Set the number of runs to execute before exiting

Default: -1



	
-p, –do_pickle


	 	Attempt to pickle the DAG object to send over to the workers, instead of letting workers run their version of the code.

Default: False



	
–pid
	PID file location

	
-D, –daemon
	Daemonize instead of running in the foreground

Default: False



	
–stdout
	Redirect stdout to this file

	
–stderr
	Redirect stderr to this file

	
-l, –log-file
	Location of the log file









task_state

Get the status of a task instance

airflow task_state [-h] [-sd SUBDIR] dag_id task_id execution_date






Positional Arguments





	
dag_id
	The id of the dag

	
task_id
	The id of the task

	
execution_date
	The execution date of the DAG







Named Arguments





	
-sd, –subdir
	File location or directory from which to look for the dag

Default: /home/docs/airflow/dags











pool

CRUD operations on pools

airflow pool [-h] [-s NAME SLOT_COUNT POOL_DESCRIPTION] [-g NAME] [-x NAME]






Named Arguments





	
-s, –set
	Set pool slot count and description, respectively

	
-g, –get
	Get pool info

	
-x, –delete
	Delete a pool









serve_logs

Serve logs generate by worker

airflow serve_logs [-h]








clear

Clear a set of task instance, as if they never ran

airflow clear [-h] [-t TASK_REGEX] [-s START_DATE] [-e END_DATE] [-sd SUBDIR]
              [-u] [-d] [-c] [-f] [-r] [-x]
              dag_id






Positional Arguments





	
dag_id
	The id of the dag







Named Arguments





	
-t, –task_regex


	 	The regex to filter specific task_ids to backfill (optional)

	
-s, –start_date


	 	Override start_date YYYY-MM-DD

	
-e, –end_date
	Override end_date YYYY-MM-DD

	
-sd, –subdir
	File location or directory from which to look for the dag

Default: /home/docs/airflow/dags



	
-u, –upstream
	Include upstream tasks

Default: False



	
-d, –downstream


	 	Include downstream tasks

Default: False



	
-c, –no_confirm


	 	Do not request confirmation

Default: False



	
-f, –only_failed


	 	Only failed jobs

Default: False



	
-r, –only_running


	 	Only running jobs

Default: False



	
-x, –exclude_subdags


	 	Exclude subdags

Default: False











upgradedb

Upgrade the metadata database to latest version

airflow upgradedb [-h]













          

      

      

    

  

    
      
          
            
  
Scheduling & Triggers

The Airflow scheduler monitors all tasks and all DAGs, and triggers the
task instances whose dependencies have been met. Behind the scenes,
it monitors and stays in sync with a folder for all DAG objects it may contain,
and periodically (every minute or so) inspects active tasks to see whether
they can be triggered.

The Airflow scheduler is designed to run as a persistent service in an
Airflow production environment. To kick it off, all you need to do is
execute airflow scheduler. It will use the configuration specified in
airflow.cfg.

Note that if you run a DAG on a schedule_interval of one day,
the run stamped 2016-01-01 will be trigger soon after 2016-01-01T23:59.
In other words, the job instance is started once the period it covers
has ended.

Let’s Repeat That The scheduler runs your job one schedule_interval AFTER the
start date, at the END of the period.

The scheduler starts an instance of the executor specified in the your
airflow.cfg. If it happens to be the LocalExecutor, tasks will be
executed as subprocesses; in the case of CeleryExecutor and
MesosExecutor, tasks are executed remotely.

To start a scheduler, simply run the command:

airflow scheduler






DAG Runs

A DAG Run is an object representing an instantiation of the DAG in time.

Each DAG may or may not have a schedule, which informs how DAG Runs are
created. schedule_interval is defined as a DAG arguments, and receives
preferably a
cron expression [https://en.wikipedia.org/wiki/Cron#CRON_expression] as
a str, or a datetime.timedelta object. Alternatively, you can also
use one of these cron “preset”:








	preset
	Run once a year at midnight of January 1
	cron




	None
	Don’t schedule, use for exclusively “externally triggered”
DAGs
	 


	@once
	Schedule once and only once
	 


	@hourly
	Run once an hour at the beginning of the hour
	0 * * * *


	@daily
	Run once a day at midnight
	0 0 * * *


	@weekly
	Run once a week at midnight on Sunday morning
	0 0 * * 0


	@monthly
	Run once a month at midnight of the first day of the month
	0 0 1 * *


	@yearly
	Run once a year at midnight of January 1
	0 0 1 1 *





Your DAG will be instantiated
for each schedule, while creating a DAG Run entry for each schedule.

DAG runs have a state associated to them (running, failed, success) and
informs the scheduler on which set of schedules should be evaluated for
task submissions. Without the metadata at the DAG run level, the Airflow
scheduler would have much more work to do in order to figure out what tasks
should be triggered and come to a crawl. It might also create undesired
processing when changing the shape of your DAG, by say adding in new
tasks.




Backfill and Catchup

An Airflow DAG with a start_date, possibly an end_date, and a schedule_interval defines a
series of intervals which the scheduler turn into individual Dag Runs and execute. A key capability of
Airflow is that these DAG Runs are atomic, idempotent items, and the scheduler, by default, will examine
the lifetime of the DAG (from start to end/now, one interval at a time) and kick off a DAG Run for any
interval that has not been run (or has been cleared). This concept is called Catchup.

If your DAG is written to handle it’s own catchup (IE not limited to the interval, but instead to “Now”
for instance.), then you will want to turn catchup off (Either on the DAG itself with dag.catchup =
False) or by default at the configuration file level with catchup_by_default = False. What this
will do, is to instruct the scheduler to only create a DAG Run for the most current instance of the DAG
interval series.

"""
Code that goes along with the Airflow tutorial located at:
https://github.com/airbnb/airflow/blob/master/airflow/example_dags/tutorial.py
"""
from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from datetime import datetime, timedelta


default_args = {
    'owner': 'airflow',
    'depends_on_past': False,
    'start_date': datetime(2015, 12, 1),
    'email': ['airflow@example.com'],
    'email_on_failure': False,
    'email_on_retry': False,
    'retries': 1,
    'retry_delay': timedelta(minutes=5),
    'schedule_interval': '@hourly',
}

dag = DAG('tutorial', catchup=False, default_args=default_args)





In the example above, if the DAG is picked up by the scheduler daemon on 2016-01-02 at 6 AM, (or from the
command line), a single DAG Run will be created, with an execution_date of 2016-01-01, and the next
one will be created just after midnight on the morning of 2016-01-03 with an execution date of 2016-01-02.

If the dag.catchup value had been True instead, the scheduler would have created a DAG Run for each
completed interval between 2015-12-01 and 2016-01-02 (but not yet one for 2016-01-02, as that interval
hasn’t completed) and the scheduler will execute them sequentially. This behavior is great for atomic
datasets that can easily be split into periods. Turning catchup off is great if your DAG Runs perform
backfill internally.




External Triggers

Note that DAG Runs can also be created manually through the CLI while
running an airflow trigger_dag command, where you can define a
specific run_id. The DAG Runs created externally to the
scheduler get associated to the trigger’s timestamp, and will be displayed
in the UI alongside scheduled DAG runs.




To Keep in Mind


	The first DAG Run is created based on the minimum start_date for the
tasks in your DAG.

	Subsequent DAG Runs are created by the scheduler process, based on
your DAG’s schedule_interval, sequentially.

	When clearing a set of tasks’ state in hope of getting them to re-run,
it is important to keep in mind the DAG Run‘s state too as it defines
whether the scheduler should look into triggering tasks for that run.



Here are some of the ways you can unblock tasks:


	From the UI, you can clear (as in delete the status of) individual task instances from the task instances dialog, while defining whether you want to includes the past/future and the upstream/downstream dependencies. Note that a confirmation window comes next and allows you to see the set you are about to clear.

	The CLI command airflow clear -h has lots of options when it comes to clearing task instance states, including specifying date ranges, targeting task_ids by specifying a regular expression, flags for including upstream and downstream relatives, and targeting task instances in specific states (failed, or success)

	Marking task instances as successful can be done through the UI. This is mostly to fix false negatives, or for instance when the fix has been applied outside of Airflow.

	The airflow backfill CLI subcommand has a flag to --mark_success and allows selecting subsections of the DAG as well as specifying date ranges.









          

      

      

    

  

    
      
          
            
  
Plugins

Airflow has a simple plugin manager built-in that can integrate external
features to its core by simply dropping files in your
$AIRFLOW_HOME/plugins folder.

The python modules in the plugins folder get imported,
and hooks, operators, macros, executors and web views
get integrated to Airflow’s main collections and become available for use.


What for?

Airflow offers a generic toolbox for working with data. Different
organizations have different stacks and different needs. Using Airflow
plugins can be a way for companies to customize their Airflow installation
to reflect their ecosystem.

Plugins can be used as an easy way to write, share and activate new sets of
features.

There’s also a need for a set of more complex applications to interact with
different flavors of data and metadata.

Examples:


	A set of tools to parse Hive logs and expose Hive metadata (CPU /IO / phases/ skew /...)

	An anomaly detection framework, allowing people to collect metrics, set thresholds and alerts

	An auditing tool, helping understand who accesses what

	A config-driven SLA monitoring tool, allowing you to set monitored tables and at what time
they should land, alert people, and expose visualizations of outages

	...






Why build on top of Airflow?

Airflow has many components that can be reused when building an application:


	A web server you can use to render your views

	A metadata database to store your models

	Access to your databases, and knowledge of how to connect to them

	An array of workers that your application can push workload to

	Airflow is deployed, you can just piggy back on it’s deployment logistics

	Basic charting capabilities, underlying libraries and abstractions






Interface

To create a plugin you will need to derive the
airflow.plugins_manager.AirflowPlugin class and reference the objects
you want to plug into Airflow. Here’s what the class you need to derive
looks like:

class AirflowPlugin(object):
    # The name of your plugin (str)
    name = None
    # A list of class(es) derived from BaseOperator
    operators = []
    # A list of class(es) derived from BaseHook
    hooks = []
    # A list of class(es) derived from BaseExecutor
    executors = []
    # A list of references to inject into the macros namespace
    macros = []
    # A list of objects created from a class derived
    # from flask_admin.BaseView
    admin_views = []
    # A list of Blueprint object created from flask.Blueprint
    flask_blueprints = []
    # A list of menu links (flask_admin.base.MenuLink)
    menu_links = []








Example

The code below defines a plugin that injects a set of dummy object
definitions in Airflow.

# This is the class you derive to create a plugin
from airflow.plugins_manager import AirflowPlugin

from flask import Blueprint
from flask_admin import BaseView, expose
from flask_admin.base import MenuLink

# Importing base classes that we need to derive
from airflow.hooks.base_hook import BaseHook
from airflow.models import  BaseOperator
from airflow.executors.base_executor import BaseExecutor

# Will show up under airflow.hooks.test_plugin.PluginHook
class PluginHook(BaseHook):
    pass

# Will show up under airflow.operators.test_plugin.PluginOperator
class PluginOperator(BaseOperator):
    pass

# Will show up under airflow.executors.test_plugin.PluginExecutor
class PluginExecutor(BaseExecutor):
    pass

# Will show up under airflow.macros.test_plugin.plugin_macro
def plugin_macro():
    pass

# Creating a flask admin BaseView
class TestView(BaseView):
    @expose('/')
    def test(self):
        # in this example, put your test_plugin/test.html template at airflow/plugins/templates/test_plugin/test.html
        return self.render("test_plugin/test.html", content="Hello galaxy!")
v = TestView(category="Test Plugin", name="Test View")

# Creating a flask blueprint to intergrate the templates and static folder
bp = Blueprint(
    "test_plugin", __name__,
    template_folder='templates', # registers airflow/plugins/templates as a Jinja template folder
    static_folder='static',
    static_url_path='/static/test_plugin')

ml = MenuLink(
    category='Test Plugin',
    name='Test Menu Link',
    url='http://pythonhosted.org/airflow/')

# Defining the plugin class
class AirflowTestPlugin(AirflowPlugin):
    name = "test_plugin"
    operators = [PluginOperator]
    hooks = [PluginHook]
    executors = [PluginExecutor]
    macros = [plugin_macro]
    admin_views = [v]
    flask_blueprints = [bp]
    menu_links = [ml]











          

      

      

    

  

    
      
          
            
  
Security

By default, all gates are opened. An easy way to restrict access
to the web application is to do it at the network level, or by using
SSH tunnels.

It is however possible to switch on authentication by either using one of the supplied
backends or creating your own.


Web Authentication


Password

One of the simplest mechanisms for authentication is requiring users to specify a password before logging in.
Password authentication requires the used of the password subpackage in your requirements file. Password hashing
uses bcrypt before storing passwords.

[webserver]
authenticate = True
auth_backend = airflow.contrib.auth.backends.password_auth





When password auth is enabled, an initial user credential will need to be created before anyone can login. An initial
user was not created in the migrations for this authenication backend to prevent default Airflow installations from
attack. Creating a new user has to be done via a Python REPL on the same machine Airflow is installed.

# navigate to the airflow installation directory
$ cd ~/airflow
$ python
Python 2.7.9 (default, Feb 10 2015, 03:28:08)
Type "help", "copyright", "credits" or "license" for more information.
>>> import airflow
>>> from airflow import models, settings
>>> from airflow.contrib.auth.backends.password_auth import PasswordUser
>>> user = PasswordUser(models.User())
>>> user.username = 'new_user_name'
>>> user.email = 'new_user_email@example.com'
>>> user.password = 'set_the_password'
>>> session = settings.Session()
>>> session.add(user)
>>> session.commit()
>>> session.close()
>>> exit()








LDAP

To turn on LDAP authentication configure your airflow.cfg as follows. Please note that the example uses
an encrypted connection to the ldap server as you probably do not want passwords be readable on the network level.
It is however possible to configure without encryption if you really want to.

Additionally, if you are using Active Directory, and are not explicitly specifying an OU that your users are in,
you will need to change search_scope to “SUBTREE”.

Valid search_scope options can be found in the ldap3 Documentation [http://ldap3.readthedocs.org/searches.html?highlight=search_scope]

[webserver]
authenticate = True
auth_backend = airflow.contrib.auth.backends.ldap_auth

[ldap]
# set a connection without encryption: uri = ldap://<your.ldap.server>:<port>
uri = ldaps://<your.ldap.server>:<port>
user_filter = objectClass=*
# in case of Active Directory you would use: user_name_attr = sAMAccountName
user_name_attr = uid
superuser_filter = memberOf=CN=airflow-super-users,OU=Groups,OU=RWC,OU=US,OU=NORAM,DC=example,DC=com
data_profiler_filter = memberOf=CN=airflow-data-profilers,OU=Groups,OU=RWC,OU=US,OU=NORAM,DC=example,DC=com
bind_user = cn=Manager,dc=example,dc=com
bind_password = insecure
basedn = dc=example,dc=com
cacert = /etc/ca/ldap_ca.crt
# Set search_scope to one of them:  BASE, LEVEL , SUBTREE
# Set search_scope to SUBTREE if using Active Directory, and not specifying an Organizational Unit
search_scope = LEVEL





The superuser_filter and data_profiler_filter are optional. If defined, these configurations allow you to specify LDAP groups that users must belong to in order to have superuser (admin) and data-profiler permissions. If undefined, all users will be superusers and data profilers.




Roll your own

Airflow uses flask_login and
exposes a set of hooks in the airflow.default_login module. You can
alter the content and make it part of the PYTHONPATH and configure it as a backend in airflow.cfg.

[webserver]
authenticate = True
auth_backend = mypackage.auth










Multi-tenancy

You can filter the list of dags in webserver by owner name when authentication
is turned on by setting webserver:filter_by_owner in your config. With this, a user will see
only the dags which it is owner of, unless it is a superuser.

[webserver]
filter_by_owner = True








Kerberos

Airflow has initial support for Kerberos. This means that airflow can renew kerberos
tickets for itself and store it in the ticket cache. The hooks and dags can make use of ticket
to authenticate against kerberized services.


Limitations

Please note that at this time, not all hooks have been adjusted to make use of this functionality.
Also it does not integrate kerberos into the web interface and you will have to rely on network
level security for now to make sure your service remains secure.

Celery integration has not been tried and tested yet. However, if you generate a key tab for every
host and launch a ticket renewer next to every worker it will most likely work.




Enabling kerberos


Airflow

To enable kerberos you will need to generate a (service) key tab.

# in the kadmin.local or kadmin shell, create the airflow principal
kadmin:  addprinc -randkey airflow/fully.qualified.domain.name@YOUR-REALM.COM

# Create the airflow keytab file that will contain the airflow principal
kadmin:  xst -norandkey -k airflow.keytab airflow/fully.qualified.domain.name





Now store this file in a location where the airflow user can read it (chmod 600). And then add the following to
your airflow.cfg

[core]
security = kerberos

[kerberos]
keytab = /etc/airflow/airflow.keytab
reinit_frequency = 3600
principal = airflow





Launch the ticket renewer by

# run ticket renewer
airflow kerberos








Hadoop

If want to use impersonation this needs to be enabled in core-site.xml of your hadoop config.

<property>
  <name>hadoop.proxyuser.airflow.groups</name>
  <value>*</value>
</property>

<property>
  <name>hadoop.proxyuser.airflow.users</name>
  <value>*</value>
</property>

<property>
  <name>hadoop.proxyuser.airflow.hosts</name>
  <value>*</value>
</property>





Of course if you need to tighten your security replace the asterisk with something more appropriate.






Using kerberos authentication

The hive hook has been updated to take advantage of kerberos authentication. To allow your DAGs to
use it, simply update the connection details with, for example:

{ "use_beeline": true, "principal": "hive/_HOST@EXAMPLE.COM"}





Adjust the principal to your settings. The _HOST part will be replaced by the fully qualified domain name of
the server.

You can specify if you would like to use the dag owner as the user for the connection or the user specified in the login
section of the connection. For the login user, specify the following as extra:

{ "use_beeline": true, "principal": "hive/_HOST@EXAMPLE.COM", "proxy_user": "login"}





For the DAG owner use:

{ "use_beeline": true, "principal": "hive/_HOST@EXAMPLE.COM", "proxy_user": "owner"}





and in your DAG, when initializing the HiveOperator, specify:

run_as_owner=True










OAuth Authentication


GitHub Enterprise (GHE) Authentication

The GitHub Enterprise authentication backend can be used to authenticate users
against an installation of GitHub Enterprise using OAuth2. You can optionally
specify a team whitelist (composed of slug cased team names) to restrict login
to only members of those teams.

[webserver]
authenticate = True
auth_backend = airflow.contrib.auth.backends.github_enterprise_auth

[github_enterprise]
host = github.example.com
client_id = oauth_key_from_github_enterprise
client_secret = oauth_secret_from_github_enterprise
oauth_callback_route = /example/ghe_oauth/callback
allowed_teams = 1, 345, 23






Note

If you do not specify a team whitelist, anyone with a valid account on
your GHE installation will be able to login to Airflow.




Setting up GHE Authentication

An application must be setup in GHE before you can use the GHE authentication
backend. In order to setup an application:


	Navigate to your GHE profile

	Select ‘Applications’ from the left hand nav

	Select the ‘Developer Applications’ tab

	Click ‘Register new application’

	Fill in the required information (the ‘Authorization callback URL’ must be fully qualifed e.g. http://airflow.example.com/example/ghe_oauth/callback)

	Click ‘Register application’

	Copy ‘Client ID’, ‘Client Secret’, and your callback route to your airflow.cfg according to the above example








Google Authentication

The Google authentication backend can be used to authenticate users
against Google using OAuth2. You must specify a domain to restrict login
to only members of that domain.

[webserver]
authenticate = True
auth_backend = airflow.contrib.auth.backends.google_auth

[google]
client_id = google_client_id
client_secret = google_client_secret
oauth_callback_route = /oauth2callback
domain = example.com






Setting up Google Authentication

An application must be setup in the Google API Console before you can use the Google authentication
backend. In order to setup an application:


	Navigate to https://console.developers.google.com/apis/

	Select ‘Credentials’ from the left hand nav

	Click ‘Create credentials’ and choose ‘OAuth client ID’

	Choose ‘Web application’

	Fill in the required information (the ‘Authorized redirect URIs’ must be fully qualifed e.g. http://airflow.example.com/oauth2callback)

	Click ‘Create’

	Copy ‘Client ID’, ‘Client Secret’, and your redirect URI to your airflow.cfg according to the above example










SSL

SSL can be enabled by providing a certificate and key. Once enabled, be sure to use
“https://” in your browser.

[webserver]
web_server_ssl_cert = <path to cert>
web_server_ssl_key = <path to key>





Enabling SSL will not automatically change the web server port. If you want to use the
standard port 443, you’ll need to configure that too. Be aware that super user privileges
(or cap_net_bind_service on Linux) are required to listen on port 443.

# Optionally, set the server to listen on the standard SSL port.
web_server_port = 443
base_url = http://<hostname or IP>:443








Impersonation

Airflow has the ability to impersonate a unix user while running task
instances based on the task’s run_as_user parameter, which takes a user’s name.

NOTE: For impersonations to work, Airflow must be run with sudo as subtasks are run
with sudo -u and permissions of files are changed. Furthermore, the unix user needs to
exist on the worker. Here is what a simple sudoers file entry could look like to achieve
this, assuming as airflow is running as the airflow user. Note that this means that
the airflow user must be trusted and treated the same way as the root user.

airflow ALL=(ALL) NOPASSWD: ALL





Subtasks with impersonation will still log to the same folder, except that the files they
log to will have permissions changed such that only the unix user can write to it.


Default Impersonation

To prevent tasks that don’t use impersonation to be run with sudo privileges, you can set the
core:default_impersonation config which sets a default user impersonate if run_as_user is
not set.

[core]
default_impersonation = airflow













          

      

      

    

  

    
      
          
            
  
Experimental Rest API

Airflow exposes an experimental Rest API. It is available through the webserver. Endpoints are
available at /api/experimental/. Please note that we expect the endpoint definitions to change.


Endpoints

This is a place holder until the swagger definitions are active


	/api/experimental/dags/<DAG_ID>/tasks/<TASK_ID> returns info for a task (GET).

	/api/experimental/dags/<DAG_ID>/dag_runs creates a dag_run for a given dag id (POST).






CLI

For some functions the cli can use the API. To configure the CLI to use the API when available
configure as follows:

[cli]
api_client = airflow.api.client.json_client
endpoint_url = http://<WEBSERVER>:<PORT>








Authentication

Only Kerberos authentication is currently supported for the API. To enable this set the following
in the configuration:

[api]
auth_backend = airflow.api.auth.backend.default

[kerberos]
keytab = <KEYTAB>





The Kerberos service is configured as airflow/fully.qualified.domainname@REALM. Make sure this
principal exists in the keytab file.







          

      

      

    

  

    
      
          
            
  
Integration


	Azure: Microsoft Azure

	AWS: Amazon Webservices

	GCP: Google Cloud Platform




Azure: Microsoft Azure

Airflow has limited support for Microsoft Azure: interfaces exist only for Azure Blob
Storage. Note that the Hook, Sensor and Operator are in the contrib section.


Azure Blob Storage

All classes communicate via the Window Azure Storage Blob protocol. Make sure that a
Airflow connection of type wasb exists. Authorization can be done by supplying a
login (=Storage account name) and password (=KEY), or login and SAS token in the extra
field (see connection wasb_default for an example).


	WasbBlobSensor: Checks if a blob is present on Azure Blob storage.

	WasbPrefixSensor: Checks if blobs matching a prefix are present on Azure Blob storage.

	FileToWasbOperator: Uploads a local file to a container as a blob.

	WasbHook: Interface with Azure Blob Storage.




WasbBlobSensor




WasbPrefixSensor




FileToWasbOperator




WasbHook








AWS: Amazon Webservices

—




GCP: Google Cloud Platform

Airflow has extensive support for the Google Cloud Platform. But note that most Hooks and
Operators are in the contrib section. Meaning that they have a beta status, meaning that
they can have breaking changes between minor releases.


BigQuery


	BigQueryCheckOperator : Performs checks against a SQL query that will return a single row with different values.

	BigQueryValueCheckOperator : Performs a simple value check using SQL code.

	BigQueryIntervalCheckOperator : Checks that the values of metrics given as SQL expressions are within a certain tolerance of the ones from days_back before.

	BigQueryOperator : Executes BigQuery SQL queries in a specific BigQuery database.

	BigQueryToBigQueryOperator : Copy a BigQuery table to another BigQuery table.

	BigQueryToCloudStorageOperator : Transfers a BigQuery table to a Google Cloud Storage bucket




BigQueryCheckOperator


	
class airflow.contrib.operators.bigquery_check_operator.BigQueryCheckOperator(sql, bigquery_conn_id='bigquery_default', *args, **kwargs)

	Performs checks against Presto. The BigQueryCheckOperator expects
a sql query that will return a single row. Each value on that
first row is evaluated using python bool casting. If any of the
values return False the check is failed and errors out.

Note that Python bool casting evals the following as False:


	False

	0

	Empty string ("")

	Empty list ([])

	Empty dictionary or set ({})



Given a query like SELECT COUNT(*) FROM foo, it will fail only if
the count == 0. You can craft much more complex query that could,
for instance, check that the table has the same number of rows as
the source table upstream, or that the count of today’s partition is
greater than yesterday’s partition, or that a set of metrics are less
than 3 standard deviation for the 7 day average.

This operator can be used as a data quality check in your pipeline, and
depending on where you put it in your DAG, you have the choice to
stop the critical path, preventing from
publishing dubious data, or on the side and receive email alterts
without stopping the progress of the DAG.





	Parameters:	
	sql (string) – the sql to be executed

	bigquery_conn_id – reference to the BigQuery database
















BigQueryValueCheckOperator


	
class airflow.contrib.operators.bigquery_check_operator.BigQueryValueCheckOperator(sql, pass_value, tolerance=None, bigquery_conn_id='bigquery_default', *args, **kwargs)

	Performs a simple value check using sql code.





	Parameters:	sql (string) – the sql to be executed












BigQueryIntervalCheckOperator


	
class airflow.contrib.operators.bigquery_check_operator.BigQueryIntervalCheckOperator(table, metrics_thresholds, date_filter_column='ds', days_back=-7, bigquery_conn_id='bigquery_default', *args, **kwargs)

	Checks that the values of metrics given as SQL expressions are within
a certain tolerance of the ones from days_back before.

This method constructs a query like so:


	SELECT {metrics_threshold_dict_key} FROM {table}

	WHERE {date_filter_column}=<date>







	Parameters:	
	table (str) – the table name

	days_back (int) – number of days between ds and the ds we want to check
against. Defaults to 7 days

	metrics_threshold (dict) – a dictionary of ratios indexed by metrics, for
example ‘COUNT(*)’: 1.5 would require a 50 percent or less difference
between the current day, and the prior days_back.
















BigQueryOperator


	
class airflow.contrib.operators.bigquery_operator.BigQueryOperator(bql, destination_dataset_table=False, write_disposition='WRITE_EMPTY', allow_large_results=False, bigquery_conn_id='bigquery_default', delegate_to=None, udf_config=False, use_legacy_sql=True, *args, **kwargs)

	Executes BigQuery SQL queries in a specific BigQuery database





	Parameters:	
	bql (Can receive a str representing a sql statement,
a list of str (sql statements), or reference to a template file.
Template reference are recognized by str ending in '.sql') – the sql code to be executed

	destination_dataset_table (string) – A dotted
(<project>.|<project>:)<dataset>.<table> that, if set, will store the results
of the query.

	bigquery_conn_id (string) – reference to a specific BigQuery hook.

	delegate_to (string) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide
delegation enabled.

	udf_config (list) – The User Defined Function configuration for the query.
See https://cloud.google.com/bigquery/user-defined-functions for details.

	use_legacy_sql (boolean) – Whether to use legacy SQL (true) or standard SQL (false).
















BigQueryToBigQueryOperator


	
class airflow.contrib.operators.bigquery_to_bigquery.BigQueryToBigQueryOperator(source_project_dataset_tables, destination_project_dataset_table, write_disposition='WRITE_EMPTY', create_disposition='CREATE_IF_NEEDED', bigquery_conn_id='bigquery_default', delegate_to=None, *args, **kwargs)

	Copies data from one BigQuery table to another. See here:

https://cloud.google.com/bigquery/docs/reference/v2/jobs#configuration.copy

For more details about these parameters.





	Parameters:	
	source_project_dataset_tables (list|string) – One or more
dotted (project:|project.)<dataset>.<table> BigQuery tables to use as the
source data. If <project> is not included, project will be the project defined
in the connection json. Use a list if there are multiple source tables.

	destination_project_dataset_table (string) – The destination BigQuery
table. Format is: (project:|project.)<dataset>.<table>

	write_disposition (string) – The write disposition if the table already exists.

	create_disposition (string) – The create disposition if the table doesn’t exist.

	bigquery_conn_id (string) – reference to a specific BigQuery hook.

	delegate_to (string) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide
delegation enabled.
















BigQueryToCloudStorageOperator


	
class airflow.contrib.operators.bigquery_to_gcs.BigQueryToCloudStorageOperator(source_project_dataset_table, destination_cloud_storage_uris, compression='NONE', export_format='CSV', field_delimiter=', ', print_header=True, bigquery_conn_id='bigquery_default', delegate_to=None, *args, **kwargs)

	Transfers a BigQuery table to a Google Cloud Storage bucket.

See here:

https://cloud.google.com/bigquery/docs/reference/v2/jobs

For more details about these parameters.





	Parameters:	
	source_project_dataset_table (string) – The dotted
(<project>.|<project>:)<dataset>.<table> BigQuery table to use as the source
data. If <project> is not included, project will be the project defined in
the connection json.

	destination_cloud_storage_uris (list) – The destination Google Cloud
Storage URI (e.g. gs://some-bucket/some-file.txt). Follows
convention defined here:
https://cloud.google.com/bigquery/exporting-data-from-bigquery#exportingmultiple

	compression (string) – Type of compression to use.

	export_format – File format to export.

	field_delimiter (string) – The delimiter to use when extracting to a CSV.

	print_header (boolean) – Whether to print a header for a CSV file extract.

	bigquery_conn_id (string) – reference to a specific BigQuery hook.

	delegate_to (string) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide
delegation enabled.














BigQueryHook


	
class airflow.contrib.hooks.bigquery_hook.BigQueryHook(bigquery_conn_id='bigquery_default', delegate_to=None)

	Interact with BigQuery. This hook uses the Google Cloud Platform
connection.


	
get_conn()

	Returns a BigQuery PEP 249 connection object.






	
get_pandas_df(bql, parameters=None)

	Returns a Pandas DataFrame for the results produced by a BigQuery
query. The DbApiHook method must be overridden because Pandas
doesn’t support PEP 249 connections, except for SQLite. See:

https://github.com/pydata/pandas/blob/master/pandas/io/sql.py#L447
https://github.com/pydata/pandas/issues/6900





	Parameters:	bql (string) – The BigQuery SQL to execute.










	
get_service()

	Returns a BigQuery service object.






	
insert_rows(table, rows, target_fields=None, commit_every=1000)

	Insertion is currently unsupported. Theoretically, you could use
BigQuery’s streaming API to insert rows into a table, but this hasn’t
been implemented.






	
table_exists(project_id, dataset_id, table_id)

	Checks for the existence of a table in Google BigQuery.





	Parameters:	project_id – The Google cloud project in which to look for the table. The connection supplied to the hook





must provide access to the specified project.
:type project_id: string
:param dataset_id: The name of the dataset in which to look for the table.


storage bucket.






	Parameters:	table_id (string) – The name of the table to check the existence of.




















Cloud DataFlow


	DataFlowJavaOperator :




DataFlowJavaOperator


	
class airflow.contrib.operators.dataflow_operator.DataFlowJavaOperator(jar, dataflow_default_options=None, options=None, gcp_conn_id='google_cloud_default', delegate_to=None, *args, **kwargs)

	Start a Java Cloud DataFlow batch job. The parameters of the operation
will be passed to the job.

It’s a good practice to define dataflow_* parameters in the default_args of the dag
like the project, zone and staging location.

```
default_args = {



	‘dataflow_default_options’: {

	‘project’: ‘my-gcp-project’,
‘zone’: ‘europe-west1-d’,
‘stagingLocation’: ‘gs://my-staging-bucket/staging/’



}




You need to pass the path to your dataflow as a file reference with the jar
parameter, the jar needs to be a self executing jar. Use options to pass on
options to your job.

```
t1 = DataFlowOperation(


task_id=’datapflow_example’,
jar=’{{var.value.gcp_dataflow_base}}pipeline/build/libs/pipeline-example-1.0.jar’,
options={


‘autoscalingAlgorithm’: ‘BASIC’,
‘maxNumWorkers’: ‘50’,
‘start’: ‘{{ds}}’,
‘partitionType’: ‘DAY’


},
dag=my-dag)




```

Both jar and options are templated so you can use variables in them.





default_args = {
    'owner': 'airflow',
    'depends_on_past': False,
    'start_date':
        (2016, 8, 1),
    'email': ['alex@vanboxel.be'],
    'email_on_failure': False,
    'email_on_retry': False,
    'retries': 1,
    'retry_delay': timedelta(minutes=30),
    'dataflow_default_options': {
        'project': 'my-gcp-project',
        'zone': 'us-central1-f',
        'stagingLocation': 'gs://bucket/tmp/dataflow/staging/',
    }
}

dag = DAG('test-dag', default_args=default_args)

task = DataFlowJavaOperator(
    gcp_conn_id='gcp_default',
    task_id='normalize-cal',
    jar='{{var.value.gcp_dataflow_base}}pipeline-ingress-cal-normalize-1.0.jar',
    options={
        'autoscalingAlgorithm': 'BASIC',
        'maxNumWorkers': '50',
        'start': '{{ds}}',
        'partitionType': 'DAY'

    },
    dag=dag)






DataFlowHook


	
class airflow.contrib.hooks.gcp_dataflow_hook.DataFlowHook(gcp_conn_id='google_cloud_default', delegate_to=None)

	
	
get_conn()

	Returns a Google Cloud Storage service object.
















Cloud DataProc


	DataProcPigOperator : Start a Pig query Job on a Cloud DataProc cluster.

	DataProcHiveOperator : Start a Hive query Job on a Cloud DataProc cluster.

	DataProcSparkSqlOperator : Start a Spark SQL query Job on a Cloud DataProc cluster.

	DataProcSparkOperator : Start a Spark Job on a Cloud DataProc cluster.

	DataProcHadoopOperator : Start a Hadoop Job on a Cloud DataProc cluster.

	DataProcPySparkOperator : Start a PySpark Job on a Cloud DataProc cluster.




DataProcPigOperator


	
class airflow.contrib.operators.dataproc_operator.DataProcPigOperator(query=None, query_uri=None, variables=None, job_name='{{task.task_id}}_{{ds_nodash}}', dataproc_cluster='cluster-1', dataproc_pig_properties=None, dataproc_pig_jars=None, gcp_conn_id='google_cloud_default', delegate_to=None, *args, **kwargs)

	Start a Pig query Job on a Cloud DataProc cluster. The parameters of the operation
will be passed to the cluster.

It’s a good practice to define dataproc_* parameters in the default_args of the dag
like the cluster name and UDFs.

```
default_args = {


‘dataproc_cluster’: ‘cluster-1’,
‘dataproc_pig_jars’: [


‘gs://example/udf/jar/datafu/1.2.0/datafu.jar’,
‘gs://example/udf/jar/gpig/1.2/gpig.jar’


]




You can pass a pig script as string or file reference. Use variables to pass on
variables for the pig script to be resolved on the cluster or use the parameters to
be resolved in the script as template parameters.

```
t1 = DataProcPigOperator(


task_id=’dataproc_pig’,
query=’a_pig_script.pig’,
variables={‘out’: ‘gs://example/output/{{ds}}’},


dag=dag)
```








DataProcHiveOperator


	
class airflow.contrib.operators.dataproc_operator.DataProcHiveOperator(query, variables=None, job_name='{{task.task_id}}_{{ds_nodash}}', dataproc_cluster='cluster-1', dataproc_hive_properties=None, dataproc_hive_jars=None, gcp_conn_id='google_cloud_default', delegate_to=None, *args, **kwargs)

	Start a Hive query Job on a Cloud DataProc cluster.








DataProcSparkSqlOperator


	
class airflow.contrib.operators.dataproc_operator.DataProcSparkSqlOperator(query, variables=None, job_name='{{task.task_id}}_{{ds_nodash}}', dataproc_cluster='cluster-1', dataproc_spark_properties=None, dataproc_spark_jars=None, gcp_conn_id='google_cloud_default', delegate_to=None, *args, **kwargs)

	Start a Spark SQL query Job on a Cloud DataProc cluster.








DataProcSparkOperator


	
class airflow.contrib.operators.dataproc_operator.DataProcSparkOperator(main_jar=None, main_class=None, arguments=None, archives=None, files=None, job_name='{{task.task_id}}_{{ds_nodash}}', dataproc_cluster='cluster-1', dataproc_spark_properties=None, dataproc_spark_jars=None, gcp_conn_id='google_cloud_default', delegate_to=None, *args, **kwargs)

	Start a Spark Job on a Cloud DataProc cluster.








DataProcHadoopOperator


	
class airflow.contrib.operators.dataproc_operator.DataProcHadoopOperator(main_jar=None, main_class=None, arguments=None, archives=None, files=None, job_name='{{task.task_id}}_{{ds_nodash}}', dataproc_cluster='cluster-1', dataproc_hadoop_properties=None, dataproc_hadoop_jars=None, gcp_conn_id='google_cloud_default', delegate_to=None, *args, **kwargs)

	Start a Hadoop Job on a Cloud DataProc cluster.






DataProcPySparkOperator


	
class airflow.contrib.operators.dataproc_operator.DataProcPySparkOperator(main, arguments=None, archives=None, pyfiles=None, files=None, job_name='{{task.task_id}}_{{ds_nodash}}', dataproc_cluster='cluster-1', dataproc_pyspark_properties=None, dataproc_pyspark_jars=None, gcp_conn_id='google_cloud_default', delegate_to=None, *args, **kwargs)

	Start a PySpark Job on a Cloud DataProc cluster.












Cloud Datastore


	
class airflow.contrib.hooks.datastore_hook.DatastoreHook(datastore_conn_id='google_cloud_datastore_default', delegate_to=None)

	Interact with Google Cloud Datastore. This hook uses the Google Cloud Platform
connection.

This object is not threads safe. If you want to make multiple requests
simultaniously, you will need to create a hook per thread.


	
allocate_ids(partialKeys)

	Allocate IDs for incomplete keys.
see https://cloud.google.com/datastore/docs/apis/v1beta2/datasets/allocateIds





	Parameters:	partialKeys – a list of partial keys


	Returns:	a list of full keys.










	
begin_transaction()

	Get a new transaction handle
see https://cloud.google.com/datastore/docs/apis/v1beta2/datasets/beginTransaction





	Returns:	a transaction handle










	
commit(body)

	Commit a transaction, optionally creating, deleting or modifying some entities.
see https://cloud.google.com/datastore/docs/apis/v1beta2/datasets/commit





	Parameters:	body – the body of the commit request


	Returns:	the response body of the commit request










	
get_conn()

	Returns a Google Cloud Storage service object.






	
lookup(keys, read_consistency=None, transaction=None)

	Lookup some entities by key
see https://cloud.google.com/datastore/docs/apis/v1beta2/datasets/lookup
:param keys: the keys to lookup
:param read_consistency: the read consistency to use. default, strong or eventual.


Cannot be used with a transaction.






	Parameters:	transaction – the transaction to use, if any.


	Returns:	the response body of the lookup request.










	
rollback(transaction)

	Roll back a transaction
see https://cloud.google.com/datastore/docs/apis/v1beta2/datasets/rollback
:param transaction: the transaction to roll back






	
run_query(body)

	Run a query for entities.
see https://cloud.google.com/datastore/docs/apis/v1beta2/datasets/runQuery
:param body: the body of the query request
:return: the batch of query results.












Cloud Storage


	GoogleCloudStorageDownloadOperator : Downloads a file from Google Cloud Storage.

	GoogleCloudStorageToBigQueryOperator : Loads files from Google cloud storage into BigQuery.




GoogleCloudStorageDownloadOperator


	
class airflow.contrib.operators.gcs_download_operator.GoogleCloudStorageDownloadOperator(bucket, object, filename=False, store_to_xcom_key=False, google_cloud_storage_conn_id='google_cloud_storage_default', delegate_to=None, *args, **kwargs)

	Downloads a file from Google Cloud Storage.





	Parameters:	
	bucket (string) – The Google cloud storage bucket where the object is.

	object (string) – The name of the object to download in the Google cloud
storage bucket.

	filename (string) – The file path on the local file system (where the
operator is being executed) that the file should be downloaded to.
If false, the downloaded data will not be stored on the local file
system.

	store_to_xcom_key (string) – If this param is set, the operator will push
the contents of the downloaded file to XCom with the key set in this
parameter. If false, the downloaded data will not be pushed to XCom.

	google_cloud_storage_conn_id (string) – The connection ID to use when
connecting to Google cloud storage.

	delegate_to (string) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide delegation enabled.
















GoogleCloudStorageToBigQueryOperator


	
class airflow.contrib.operators.gcs_to_bq.GoogleCloudStorageToBigQueryOperator(bucket, source_objects, destination_project_dataset_table, schema_fields=None, schema_object=None, source_format='CSV', create_disposition='CREATE_IF_NEEDED', skip_leading_rows=0, write_disposition='WRITE_EMPTY', field_delimiter=', ', max_id_key=None, bigquery_conn_id='bigquery_default', google_cloud_storage_conn_id='google_cloud_storage_default', delegate_to=None, schema_update_options=(), *args, **kwargs)

	Loads files from Google cloud storage into BigQuery.






GoogleCloudStorageHook


	
class airflow.contrib.hooks.gcs_hook.GoogleCloudStorageHook(google_cloud_storage_conn_id='google_cloud_storage_default', delegate_to=None)

	Interact with Google Cloud Storage. This hook uses the Google Cloud Platform
connection.


	
download(bucket, object, filename=False)

	Get a file from Google Cloud Storage.





	Parameters:	
	bucket (string) – The bucket to fetch from.

	object (string) – The object to fetch.

	filename (string) – If set, a local file path where the file should be written to.














	
exists(bucket, object)

	Checks for the existence of a file in Google Cloud Storage.





	Parameters:	
	bucket (string) – The Google cloud storage bucket where the object is.

	object (string) – The name of the object to check in the Google cloud
storage bucket.














	
get_conn()

	Returns a Google Cloud Storage service object.






	
is_updated_after(bucket, object, ts)

	Checks if an object is updated in Google Cloud Storage.





	Parameters:	
	bucket (string) – The Google cloud storage bucket where the object is.

	object (string) – The name of the object to check in the Google cloud
storage bucket.

	ts (datetime) – The timestamp to check against.














	
upload(bucket, object, filename, mime_type='application/octet-stream')

	Uploads a local file to Google Cloud Storage.





	Parameters:	
	bucket (string) – The bucket to upload to.

	object (string) – The object name to set when uploading the local file.

	filename (string) – The local file path to the file to be uploaded.

	mime_type (string) – The MIME type to set when uploading the file.





























          

      

      

    

  

    
      
          
            
  
FAQ


Why isn’t my task getting scheduled?

There are very many reasons why your task might not be getting scheduled.
Here are some of the common causes:


	Does your script “compile”, can the Airflow engine parse it and find your
DAG object. To test this, you can run airflow list_dags and
confirm that your DAG shows up in the list. You can also run
airflow list_tasks foo_dag_id --tree and confirm that your task
shows up in the list as expected. If you use the CeleryExecutor, you
may way to confirm that this works both where the scheduler runs as well
as where the worker runs.

	Is your start_date set properly? The Airflow scheduler triggers the
task soon after the start_date + scheduler_interval is passed.

	Is your schedule_interval set properly? The default schedule_interval
is one day (datetime.timedelta(1)). You must specify a different schedule_interval
directly to the DAG object you instantiate, not as a default_param, as task instances
do not override their parent DAG’s schedule_interval.

	Is your start_date beyond where you can see it in the UI? If you
set your it to some time say 3 months ago, you won’t be able to see
it in the main view in the UI, but you should be able to see it in the
Menu -> Browse ->Task Instances.

	Are the dependencies for the task met. The task instances directly
upstream from the task need to be in a success state. Also,
if you have set depends_on_past=True, the previous task instance
needs to have succeeded (except if it is the first run for that task).
Also, if wait_for_downstream=True, make sure you understand
what it means.
You can view how these properties are set from the Task Instance Details
page for your task.

	Are the DagRuns you need created and active? A DagRun represents a specific
execution of an entire DAG and has a state (running, success, failed, ...).
The scheduler creates new DagRun as it moves forward, but never goes back
in time to create new ones. The scheduler only evaluates running DagRuns
to see what task instances it can trigger. Note that clearing tasks
instances (from the UI or CLI) does set the state of a DagRun back to
running. You can bulk view the list of DagRuns and alter states by clicking
on the schedule tag for a DAG.

	Is the concurrency parameter of your DAG reached? concurency defines
how many running task instances a DAG is allowed to have, beyond which
point things get queued.

	Is the max_active_runs parameter of your DAG reached? max_active_runs defines
how many running concurrent instances of a DAG there are allowed to be.



You may also want to read the Scheduler section of the docs and make
sure you fully understand how it proceeds.




How do I trigger tasks based on another task’s failure?

Check out the Trigger Rule section in the Concepts section of the
documentation




Why are connection passwords still not encrypted in the metadata db after I installed airflow[crypto]?


	Verify that the fernet_key defined in $AIRFLOW_HOME/airflow.cfg is a valid Fernet key. It must be a base64-encoded 32-byte key. You need to restart the webserver after you update the key

	For existing connections (the ones that you had defined before installing airflow[crypto] and creating a Fernet key), you need to open each connection in the connection admin UI, re-type the password, and save it






What’s the deal with start_date?

start_date is partly legacy from the pre-DagRun era, but it is still
relevant in many ways. When creating a new DAG, you probably want to set
a global start_date for your tasks using default_args. The first
DagRun to be created will be based on the min(start_date) for all your
task. From that point on, the scheduler creates new DagRuns based on
your schedule_interval and the corresponding task instances run as your
dependencies are met. When introducing new tasks to your DAG, you need to
pay special attention to start_date, and may want to reactivate
inactive DagRuns to get the new task to get onboarded properly.

We recommend against using dynamic values as start_date, especially
datetime.now() as it can be quite confusing. The task is triggered
once the period closes, and in theory an @hourly DAG would never get to
an hour after now as now() moves along.

Previously we also recommended using rounded start_date in relation to your
schedule_interval. This meant an @hourly would be at 00:00
minutes:seconds, a @daily job at midnight, a @monthly job on the
first of the month. This is no longer required. Airflow will now auto align
the start_date and the schedule_interval, by using the start_date
as the moment to start looking.

You can use any sensor or a TimeDeltaSensor to delay
the execution of tasks within the schedule interval.
While schedule_interval does allow specifying a datetime.timedelta
object, we recommend using the macros or cron expressions instead, as
it enforces this idea of rounded schedules.

When using depends_on_past=True it’s important to pay special attention
to start_date as the past dependency is not enforced only on the specific
schedule of the start_date specified for the task. It’ also
important to watch DagRun activity status in time when introducing
new depends_on_past=True, unless you are planning on running a backfill
for the new task(s).

Also important to note is that the tasks start_date, in the context of a
backfill CLI command, get overridden by the backfill’s command start_date.
This allows for a backfill on tasks that have depends_on_past=True to
actually start, if it wasn’t the case, the backfill just wouldn’t start.




How can I create DAGs dynamically?

Airflow looks in you DAGS_FOLDER for modules that contain DAG objects
in their global namespace, and adds the objects it finds in the
DagBag. Knowing this all we need is a way to dynamically assign
variable in the global namespace, which is easily done in python using the
globals() function for the standard library which behaves like a
simple dictionary.

for i in range(10):
    dag_id = 'foo_{}'.format(i)
    globals()[dag_id] = DAG(dag_id)
    # or better, call a function that returns a DAG object!








What are all the airflow run commands in my process list?

There are many layers of airflow run commands, meaning it can call itself.


	Basic airflow run: fires up an executor, and tell it to run an
airflow run --local command. if using Celery, this means it puts a
command in the queue for it to run remote, on the worker. If using
LocalExecutor, that translates into running it in a subprocess pool.

	Local airflow run --local: starts an airflow run --raw
command (described below) as a subprocess and is in charge of
emitting heartbeats, listening for external kill signals
and ensures some cleanup takes place if the subprocess fails

	Raw airflow run --raw runs the actual operator’s execute method and
performs the actual work









          

      

      

    

  

    
      
          
            
  
API Reference


Operators

Operators allow for generation of certain types of tasks that become nodes in
the DAG when instantiated. All operators derive from BaseOperator and
inherit many attributes and methods that way. Refer to the BaseOperator
documentation for more details.

There are 3 main types of operators:


	Operators that performs an action, or tell another system to
perform an action

	Transfer operators move data from one system to another

	Sensors are a certain type of operator that will keep running until a
certain criterion is met. Examples include a specific file landing in HDFS or
S3, a partition appearing in Hive, or a specific time of the day. Sensors
are derived from BaseSensorOperator and run a poke
method at a specified poke_interval until it returns True.




BaseOperator

All operators are derived from BaseOperator and acquire much
functionality through inheritance. Since this is the core of the engine,
it’s worth taking the time to understand the parameters of BaseOperator
to understand the primitive features that can be leveraged in your
DAGs.


	
class airflow.models.BaseOperator(task_id, owner='Airflow', email=None, email_on_retry=True, email_on_failure=True, retries=0, retry_delay=datetime.timedelta(0, 300), retry_exponential_backoff=False, max_retry_delay=None, start_date=None, end_date=None, schedule_interval=None, depends_on_past=False, wait_for_downstream=False, dag=None, params=None, default_args=None, adhoc=False, priority_weight=1, queue='default', pool=None, sla=None, execution_timeout=None, on_failure_callback=None, on_success_callback=None, on_retry_callback=None, trigger_rule=u'all_success', resources=None, run_as_user=None, *args, **kwargs)

	Abstract base class for all operators. Since operators create objects that
become node in the dag, BaseOperator contains many recursive methods for
dag crawling behavior. To derive this class, you are expected to override
the constructor as well as the ‘execute’ method.

Operators derived from this class should perform or trigger certain tasks
synchronously (wait for completion). Example of operators could be an
operator the runs a Pig job (PigOperator), a sensor operator that
waits for a partition to land in Hive (HiveSensorOperator), or one that
moves data from Hive to MySQL (Hive2MySqlOperator). Instances of these
operators (tasks) target specific operations, running specific scripts,
functions or data transfers.

This class is abstract and shouldn’t be instantiated. Instantiating a
class derived from this one results in the creation of a task object,
which ultimately becomes a node in DAG objects. Task dependencies should
be set by using the set_upstream and/or set_downstream methods.

Note that this class is derived from SQLAlchemy’s Base class, which
allows us to push metadata regarding tasks to the database. Deriving this
classes needs to implement the polymorphic specificities documented in
SQLAlchemy. This should become clear while reading the code for other
operators.





	Parameters:	
	task_id (string) – a unique, meaningful id for the task

	owner (string) – the owner of the task, using the unix username is recommended

	retries (int) – the number of retries that should be performed before
failing the task

	retry_delay (timedelta) – delay between retries

	retry_exponential_backoff (bool) – allow progressive longer waits between
retries by using exponential backoff algorithm on retry delay (delay
will be converted into seconds)

	max_retry_delay (timedelta) – maximum delay interval between retries

	start_date (datetime) – The start_date for the task, determines
the execution_date for the first task instance. The best practice
is to have the start_date rounded
to your DAG’s schedule_interval. Daily jobs have their start_date
some day at 00:00:00, hourly jobs have their start_date at 00:00
of a specific hour. Note that Airflow simply looks at the latest
execution_date and adds the schedule_interval to determine
the next execution_date. It is also very important
to note that different tasks’ dependencies
need to line up in time. If task A depends on task B and their
start_date are offset in a way that their execution_date don’t line
up, A’s dependencies will never be met. If you are looking to delay
a task, for example running a daily task at 2AM, look into the
TimeSensor and TimeDeltaSensor. We advise against using
dynamic start_date and recommend using fixed ones. Read the
FAQ entry about start_date for more information.

	end_date (datetime) – if specified, the scheduler won’t go beyond this date

	depends_on_past (bool) – when set to true, task instances will run
sequentially while relying on the previous task’s schedule to
succeed. The task instance for the start_date is allowed to run.

	wait_for_downstream (bool) – when set to true, an instance of task
X will wait for tasks immediately downstream of the previous instance
of task X to finish successfully before it runs. This is useful if the
different instances of a task X alter the same asset, and this asset
is used by tasks downstream of task X. Note that depends_on_past
is forced to True wherever wait_for_downstream is used.

	queue (str) – which queue to target when running this job. Not
all executors implement queue management, the CeleryExecutor
does support targeting specific queues.

	dag (DAG) – a reference to the dag the task is attached to (if any)

	priority_weight (int) – priority weight of this task against other task.
This allows the executor to trigger higher priority tasks before
others when things get backed up.

	pool (str) – the slot pool this task should run in, slot pools are a
way to limit concurrency for certain tasks

	sla (datetime.timedelta) – time by which the job is expected to succeed. Note that
this represents the timedelta after the period is closed. For
example if you set an SLA of 1 hour, the scheduler would send dan email
soon after 1:00AM on the 2016-01-02 if the 2016-01-01 instance
has not succeeded yet.
The scheduler pays special attention for jobs with an SLA and
sends alert
emails for sla misses. SLA misses are also recorded in the database
for future reference. All tasks that share the same SLA time
get bundled in a single email, sent soon after that time. SLA
notification are sent once and only once for each task instance.

	execution_timeout (datetime.timedelta) – max time allowed for the execution of
this task instance, if it goes beyond it will raise and fail.

	on_failure_callback (callable) – a function to be called when a task instance
of this task fails. a context dictionary is passed as a single
parameter to this function. Context contains references to related
objects to the task instance and is documented under the macros
section of the API.

	on_retry_callback – much like the on_failure_callback except
that it is executed when retries occur.

	on_success_callback (callable) – much like the on_failure_callback except
that it is executed when the task succeeds.

	trigger_rule (str) – defines the rule by which dependencies are applied
for the task to get triggered. Options are:
{ all_success | all_failed | all_done | one_success |
one_failed | dummy}
default is all_success. Options can be set as string or
using the constants defined in the static class
airflow.utils.TriggerRule

	resources (dict) – A map of resource parameter names (the argument names of the
Resources constructor) to their values.

	run_as_user (str) – unix username to impersonate while running the task
















BaseSensorOperator

All sensors are derived from BaseSensorOperator. All sensors inherit
the timeout and poke_interval on top of the BaseOperator
attributes.


	
class airflow.operators.sensors.BaseSensorOperator(poke_interval=60, timeout=604800, soft_fail=False, *args, **kwargs)

	Sensor operators are derived from this class an inherit these attributes.


	Sensor operators keep executing at a time interval and succeed when

	a criteria is met and fail if and when they time out.







	Parameters:	
	soft_fail (bool) – Set to true to mark the task as SKIPPED on failure

	poke_interval (int) – Time in seconds that the job should wait in
between each tries

	timeout (int) – Time, in seconds before the task times out and fails.
















Operator API

Importer that dynamically loads a class and module from its parent. This
allows Airflow to support from airflow.operators import BashOperator
even though BashOperator is actually in
airflow.operators.bash_operator.

The importer also takes over for the parent_module by wrapping it. This is
required to support attribute-based usage:

from airflow import operators
operators.BashOperator(...)






	
class airflow.operators.BashOperator(bash_command, xcom_push=False, env=None, output_encoding='utf-8', *args, **kwargs)

	Bases: airflow.models.BaseOperator

Execute a Bash script, command or set of commands.





	Parameters:	
	bash_command (string) – The command, set of commands or reference to a
bash script (must be ‘.sh’) to be executed.

	xcom_push (bool) – If xcom_push is True, the last line written to stdout
will also be pushed to an XCom when the bash command completes.

	env (dict) – If env is not None, it must be a mapping that defines the
environment variables for the new process; these are used instead
of inheriting the current process environment, which is the default
behavior. (templated)










	
execute(context)

	Execute the bash command in a temporary directory
which will be cleaned afterwards










	
class airflow.operators.BranchPythonOperator(python_callable, op_args=None, op_kwargs=None, provide_context=False, templates_dict=None, templates_exts=None, *args, **kwargs)

	Bases: python_operator.PythonOperator

Allows a workflow to “branch” or follow a single path following the
execution of this task.

It derives the PythonOperator and expects a Python function that returns
the task_id to follow. The task_id returned should point to a task
directly downstream from {self}. All other “branches” or
directly downstream tasks are marked with a state of skipped so that
these paths can’t move forward. The skipped states are propageted
downstream to allow for the DAG state to fill up and the DAG run’s state
to be inferred.

Note that using tasks with depends_on_past=True downstream from
BranchPythonOperator is logically unsound as skipped status
will invariably lead to block tasks that depend on their past successes.
skipped states propagates where all directly upstream tasks are
skipped.






	
class airflow.operators.TriggerDagRunOperator(trigger_dag_id, python_callable, *args, **kwargs)

	Bases: airflow.models.BaseOperator

Triggers a DAG run for a specified dag_id if a criteria is met





	Parameters:	
	trigger_dag_id (str) – the dag_id to trigger

	python_callable (python callable) – a reference to a python function that will be
called while passing it the context object and a placeholder
object obj for your callable to fill and return if you want
a DagRun created. This obj object contains a run_id and
payload attribute that you can modify in your function.
The run_id should be a unique identifier for that DAG run, and
the payload has to be a picklable object that will be made available
to your tasks while executing that DAG run. Your function header
should look like def foo(context, dag_run_obj):














	
class airflow.operators.DummyOperator(*args, **kwargs)

	Bases: airflow.models.BaseOperator

Operator that does literally nothing. It can be used to group tasks in a
DAG.






	
class airflow.operators.EmailOperator(to, subject, html_content, files=None, cc=None, bcc=None, mime_subtype='mixed', *args, **kwargs)

	Bases: airflow.models.BaseOperator

Sends an email.





	Parameters:	
	to (list or string (comma or semicolon delimited)) – list of emails to send the email to

	subject (string) – subject line for the email (templated)

	html_content (string) – content of the email (templated), html markup
is allowed

	files (list) – file names to attach in email

	cc (list or string (comma or semicolon delimited)) – list of recipients to be added in CC field

	bcc (list or string (comma or semicolon delimited)) – list of recipients to be added in BCC field














	
class airflow.operators.ExternalTaskSensor(external_dag_id, external_task_id, allowed_states=None, execution_delta=None, execution_date_fn=None, *args, **kwargs)

	Bases: sensors.BaseSensorOperator

Waits for a task to complete in a different DAG





	Parameters:	
	external_dag_id (string) – The dag_id that contains the task you want to
wait for

	external_task_id (string) – The task_id that contains the task you want to
wait for

	allowed_states (list) – list of allowed states, default is ['success']

	execution_delta (datetime.timedelta) – time difference with the previous execution to
look at, the default is the same execution_date as the current task.
For yesterday, use [positive!] datetime.timedelta(days=1). Either
execution_delta or execution_date_fn can be passed to
ExternalTaskSensor, but not both.

	execution_date_fn (callable) – function that receives the current execution date
and returns the desired execution date to query. Either execution_delta
or execution_date_fn can be passed to ExternalTaskSensor, but not both.














	
class airflow.operators.GenericTransfer(sql, destination_table, source_conn_id, destination_conn_id, preoperator=None, *args, **kwargs)

	Bases: airflow.models.BaseOperator

Moves data from a connection to another, assuming that they both
provide the required methods in their respective hooks. The source hook
needs to expose a get_records method, and the destination a
insert_rows method.

This is mean to be used on small-ish datasets that fit in memory.





	Parameters:	
	sql (str) – SQL query to execute against the source database

	destination_table (str) – target table

	source_conn_id (str) – source connection

	destination_conn_id (str) – source connection

	preoperator (str or list of str) – sql statement or list of statements to be
executed prior to loading the data














	
class airflow.operators.HdfsSensor(filepath, hdfs_conn_id='hdfs_default', ignored_ext=['_COPYING_'], ignore_copying=True, file_size=None, hook=<class 'airflow.hooks.hdfs_hook.HDFSHook'>, *args, **kwargs)

	Bases: sensors.BaseSensorOperator

Waits for a file or folder to land in HDFS


	
static filter_for_filesize(result, size=None)

	Will test the filepath result and test if its size is at least self.filesize
:param result: a list of dicts returned by Snakebite ls
:param size: the file size in MB a file should be at least to trigger True
:return: (bool) depending on the matching criteria






	
static filter_for_ignored_ext(result, ignored_ext, ignore_copying)

	Will filter if instructed to do so the result to remove matching criteria
:param result: (list) of dicts returned by Snakebite ls
:param ignored_ext: (list) of ignored extentions
:param ignore_copying: (bool) shall we ignore ?
:return:










	
class airflow.operators.HivePartitionSensor(table, partition="ds='{{ ds }}'", metastore_conn_id='metastore_default', schema='default', poke_interval=180, *args, **kwargs)

	Bases: sensors.BaseSensorOperator

Waits for a partition to show up in Hive.

Note: Because partition supports general logical operators, it
can be inefficient. Consider using NamedHivePartitionSensor instead if
you don’t need the full flexibility of HivePartitionSensor.





	Parameters:	
	table (string) – The name of the table to wait for, supports the dot
notation (my_database.my_table)

	partition (string) – The partition clause to wait for. This is passed as
is to the metastore Thrift client get_partitions_by_filter method,
and apparently supports SQL like notation as in ds='2015-01-01'
AND type='value' and comparison operators as in "ds>=2015-01-01"

	metastore_conn_id (str) – reference to the metastore thrift service
connection id














	
class airflow.operators.SimpleHttpOperator(endpoint, method='POST', data=None, headers=None, response_check=None, extra_options=None, xcom_push=False, http_conn_id='http_default', *args, **kwargs)

	Bases: airflow.models.BaseOperator

Calls an endpoint on an HTTP system to execute an action





	Parameters:	
	http_conn_id (string) – The connection to run the sensor against

	endpoint (string) – The relative part of the full url

	method (string) – The HTTP method to use, default = “POST”

	data (For POST/PUT, depends on the content-type parameter,
for GET a dictionary of key/value string pairs) – The data to pass. POST-data in POST/PUT and params
in the URL for a GET request.

	headers (a dictionary of string key/value pairs) – The HTTP headers to be added to the GET request

	response_check (A lambda or defined function.) – A check against the ‘requests’ response object.
Returns True for ‘pass’ and False otherwise.

	extra_options (A dictionary of options, where key is string and value
depends on the option that's being modified.) – Extra options for the ‘requests’ library, see the
‘requests’ documentation (options to modify timeout, ssl, etc.)














	
class airflow.operators.HttpSensor(endpoint, http_conn_id='http_default', method='GET', params=None, headers=None, response_check=None, extra_options=None, *args, **kwargs)

	Bases: sensors.BaseSensorOperator


	Executes a HTTP get statement and returns False on failure:

	404 not found or response_check function returned False







	Parameters:	
	http_conn_id (string) – The connection to run the sensor against

	method (string) – The HTTP request method to use

	endpoint (string) – The relative part of the full url

	params (a dictionary of string key/value pairs) – The parameters to be added to the GET url

	headers (a dictionary of string key/value pairs) – The HTTP headers to be added to the GET request

	response_check (A lambda or defined function.) – A check against the ‘requests’ response object.
Returns True for ‘pass’ and False otherwise.

	extra_options (A dictionary of options, where key is string and value
depends on the option that's being modified.) – Extra options for the ‘requests’ library, see the
‘requests’ documentation (options to modify timeout, ssl, etc.)














	
class airflow.operators.MetastorePartitionSensor(table, partition_name, schema='default', mysql_conn_id='metastore_mysql', *args, **kwargs)

	Bases: sensors.SqlSensor

An alternative to the HivePartitionSensor that talk directly to the
MySQL db. This was created as a result of observing sub optimal
queries generated by the Metastore thrift service when hitting
subpartitioned tables. The Thrift service’s queries were written in a
way that wouldn’t leverage the indexes.





	Parameters:	
	schema (str) – the schema

	table (str) – the table

	partition_name (str) – the partition name, as defined in the PARTITIONS
table of the Metastore. Order of the fields does matter.
Examples: ds=2016-01-01 or
ds=2016-01-01/sub=foo for a sub partitioned table

	mysql_conn_id (str) – a reference to the MySQL conn_id for the metastore














	
class airflow.operators.NamedHivePartitionSensor(partition_names, metastore_conn_id='metastore_default', poke_interval=180, *args, **kwargs)

	Bases: sensors.BaseSensorOperator

Waits for a set of partitions to show up in Hive.





	Parameters:	
	partition_names (list of strings) – List of fully qualified names of the
partitions to wait for. A fully qualified name is of the
form schema.table/pk1=pv1/pk2=pv2, for example,
default.users/ds=2016-01-01. This is passed as is to the metastore
Thrift client get_partitions_by_name method. Note that
you cannot use logical or comparison operators as in
HivePartitionSensor.

	metastore_conn_id (str) – reference to the metastore thrift service
connection id














	
class airflow.operators.PythonOperator(python_callable, op_args=None, op_kwargs=None, provide_context=False, templates_dict=None, templates_exts=None, *args, **kwargs)

	Bases: airflow.models.BaseOperator

Executes a Python callable





	Parameters:	
	python_callable (python callable) – A reference to an object that is callable

	op_kwargs (dict) – a dictionary of keyword arguments that will get unpacked
in your function

	op_args (list) – a list of positional arguments that will get unpacked when
calling your callable

	provide_context (bool) – if set to true, Airflow will pass a set of
keyword arguments that can be used in your function. This set of
kwargs correspond exactly to what you can use in your jinja
templates. For this to work, you need to define **kwargs in your
function header.

	templates_dict (dict of str) – a dictionary where the values are templates that
will get templated by the Airflow engine sometime between
__init__ and execute takes place and are made available
in your callable’s context after the template has been applied

	templates_exts – a list of file extensions to resolve while
processing templated fields, for examples ['.sql', '.hql']














	
class airflow.operators.S3KeySensor(bucket_key, bucket_name=None, wildcard_match=False, s3_conn_id='s3_default', *args, **kwargs)

	Bases: sensors.BaseSensorOperator

Waits for a key (a file-like instance on S3) to be present in a S3 bucket.
S3 being a key/value it does not support folders. The path is just a key
a resource.





	Parameters:	
	bucket_key (str) – The key being waited on. Supports full s3:// style url
or relative path from root level.

	bucket_name (str) – Name of the S3 bucket

	wildcard_match (bool) – whether the bucket_key should be interpreted as a
Unix wildcard pattern

	s3_conn_id (str) – a reference to the s3 connection














	
class airflow.operators.ShortCircuitOperator(python_callable, op_args=None, op_kwargs=None, provide_context=False, templates_dict=None, templates_exts=None, *args, **kwargs)

	Bases: python_operator.PythonOperator

Allows a workflow to continue only if a condition is met. Otherwise, the
workflow “short-circuits” and downstream tasks are skipped.

The ShortCircuitOperator is derived from the PythonOperator. It evaluates a
condition and short-circuits the workflow if the condition is False. Any
downstream tasks are marked with a state of “skipped”. If the condition is
True, downstream tasks proceed as normal.

The condition is determined by the result of python_callable.






	
class airflow.operators.SqlSensor(conn_id, sql, *args, **kwargs)

	Bases: sensors.BaseSensorOperator

Runs a sql statement until a criteria is met. It will keep trying until
sql returns no row, or if the first cell in (0, ‘0’, ‘’).





	Parameters:	
	conn_id (string) – The connection to run the sensor against

	sql – The sql to run. To pass, it needs to return at least one cell
that contains a non-zero / empty string value.














	
class airflow.operators.TimeSensor(target_time, *args, **kwargs)

	Bases: sensors.BaseSensorOperator

Waits until the specified time of the day.





	Parameters:	target_time (datetime.time) – time after which the job succeeds










	
class airflow.operators.WebHdfsSensor(filepath, webhdfs_conn_id='webhdfs_default', *args, **kwargs)

	Bases: sensors.BaseSensorOperator

Waits for a file or folder to land in HDFS






	
class airflow.operators.docker_operator.DockerOperator(image, api_version=None, command=None, cpus=1.0, docker_url='unix://var/run/docker.sock', environment=None, force_pull=False, mem_limit=None, network_mode=None, tls_ca_cert=None, tls_client_cert=None, tls_client_key=None, tls_hostname=None, tls_ssl_version=None, tmp_dir='/tmp/airflow', user=None, volumes=None, xcom_push=False, xcom_all=False, *args, **kwargs)

	Execute a command inside a docker container.

A temporary directory is created on the host and mounted into a container to allow storing files
that together exceed the default disk size of 10GB in a container. The path to the mounted
directory can be accessed via the environment variable AIRFLOW_TMP_DIR.





	Parameters:	
	image (str) – Docker image from which to create the container.

	api_version (str) – Remote API version.

	command (str or list) – Command to be run in the container.

	cpus (float) – Number of CPUs to assign to the container.
This value gets multiplied with 1024. See
https://docs.docker.com/engine/reference/run/#cpu-share-constraint

	docker_url (str) – URL of the host running the docker daemon.

	environment (dict) – Environment variables to set in the container.

	force_pull (bool) – Pull the docker image on every run.

	mem_limit (float or str) – Maximum amount of memory the container can use. Either a float value, which
represents the limit in bytes, or a string like 128m or 1g.

	network_mode (str) – Network mode for the container.

	tls_ca_cert (str) – Path to a PEM-encoded certificate authority to secure the docker connection.

	tls_client_cert (str) – Path to the PEM-encoded certificate used to authenticate docker client.

	tls_client_key (str) – Path to the PEM-encoded key used to authenticate docker client.

	tls_hostname (str or bool) – Hostname to match against the docker server certificate or False to
disable the check.

	tls_ssl_version (str) – Version of SSL to use when communicating with docker daemon.

	tmp_dir (str) – Mount point inside the container to a temporary directory created on the host by
the operator. The path is also made available via the environment variable
AIRFLOW_TMP_DIR inside the container.

	user (int or str) – Default user inside the docker container.

	volumes – List of volumes to mount into the container, e.g.
['/host/path:/container/path', '/host/path2:/container/path2:ro'].

	xcom_push (bool) – Does the stdout will be pushed to the next step using XCom.
The default is False.

	xcom_all (bool) – Push all the stdout or just the last line. The default is False (last line).
















Community-contributed Operators

Importer that dynamically loads a class and module from its parent. This
allows Airflow to support from airflow.operators import BashOperator
even though BashOperator is actually in
airflow.operators.bash_operator.

The importer also takes over for the parent_module by wrapping it. This is
required to support attribute-based usage:

from airflow import operators
operators.BashOperator(...)






	
class airflow.contrib.operators.SSHExecuteOperator(ssh_hook, bash_command, xcom_push=False, env=None, *args, **kwargs)

	Bases: airflow.models.BaseOperator

Execute a Bash script, command or set of commands at remote host.





	Parameters:	
	ssh_hook (string) – A SSHHook that indicates the remote host
you want to run the script

	bash_command (string) – The command, set of commands or reference to a
bash script (must be ‘.sh’) to be executed.

	env (dict) – If env is not None, it must be a mapping that defines the
environment variables for the new process; these are used instead
of inheriting the current process environment, which is the default
behavior.














	
class airflow.contrib.operators.bigquery_operator.BigQueryOperator(bql, destination_dataset_table=False, write_disposition='WRITE_EMPTY', allow_large_results=False, bigquery_conn_id='bigquery_default', delegate_to=None, udf_config=False, use_legacy_sql=True, *args, **kwargs)

	Executes BigQuery SQL queries in a specific BigQuery database





	Parameters:	
	bql (Can receive a str representing a sql statement,
a list of str (sql statements), or reference to a template file.
Template reference are recognized by str ending in '.sql') – the sql code to be executed

	destination_dataset_table (string) – A dotted
(<project>.|<project>:)<dataset>.<table> that, if set, will store the results
of the query.

	bigquery_conn_id (string) – reference to a specific BigQuery hook.

	delegate_to (string) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide
delegation enabled.

	udf_config (list) – The User Defined Function configuration for the query.
See https://cloud.google.com/bigquery/user-defined-functions for details.

	use_legacy_sql (boolean) – Whether to use legacy SQL (true) or standard SQL (false).














	
class airflow.contrib.operators.bigquery_to_gcs.BigQueryToCloudStorageOperator(source_project_dataset_table, destination_cloud_storage_uris, compression='NONE', export_format='CSV', field_delimiter=', ', print_header=True, bigquery_conn_id='bigquery_default', delegate_to=None, *args, **kwargs)

	Transfers a BigQuery table to a Google Cloud Storage bucket.

See here:

https://cloud.google.com/bigquery/docs/reference/v2/jobs

For more details about these parameters.





	Parameters:	
	source_project_dataset_table (string) – The dotted
(<project>.|<project>:)<dataset>.<table> BigQuery table to use as the source
data. If <project> is not included, project will be the project defined in
the connection json.

	destination_cloud_storage_uris (list) – The destination Google Cloud
Storage URI (e.g. gs://some-bucket/some-file.txt). Follows
convention defined here:
https://cloud.google.com/bigquery/exporting-data-from-bigquery#exportingmultiple

	compression (string) – Type of compression to use.

	export_format – File format to export.

	field_delimiter (string) – The delimiter to use when extracting to a CSV.

	print_header (boolean) – Whether to print a header for a CSV file extract.

	bigquery_conn_id (string) – reference to a specific BigQuery hook.

	delegate_to (string) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide
delegation enabled.














	
class airflow.contrib.operators.ecs_operator.ECSOperator(task_definition, cluster, overrides, aws_conn_id=None, region_name=None, **kwargs)

	Execute a task on AWS EC2 Container Service





	Parameters:	
	task_definition (str) – the task definition name on EC2 Container Service

	cluster (str) – the cluster name on EC2 Container Service

	aws_conn_id (str) – connection id of AWS credentials / region name. If None,
credential boto3 strategy will be used (http://boto3.readthedocs.io/en/latest/guide/configuration.html).

	region_name – region name to use in AWS Hook. Override the region_name in connection (if provided)






	Param:	overrides: the same parameter that boto3 will receive:
http://boto3.readthedocs.org/en/latest/reference/services/ecs.html#ECS.Client.run_task




	Type:	overrides: dict












	
class airflow.contrib.operators.gcs_download_operator.GoogleCloudStorageDownloadOperator(bucket, object, filename=False, store_to_xcom_key=False, google_cloud_storage_conn_id='google_cloud_storage_default', delegate_to=None, *args, **kwargs)

	Downloads a file from Google Cloud Storage.





	Parameters:	
	bucket (string) – The Google cloud storage bucket where the object is.

	object (string) – The name of the object to download in the Google cloud
storage bucket.

	filename (string) – The file path on the local file system (where the
operator is being executed) that the file should be downloaded to.
If false, the downloaded data will not be stored on the local file
system.

	store_to_xcom_key (string) – If this param is set, the operator will push
the contents of the downloaded file to XCom with the key set in this
parameter. If false, the downloaded data will not be pushed to XCom.

	google_cloud_storage_conn_id (string) – The connection ID to use when
connecting to Google cloud storage.

	delegate_to (string) – The account to impersonate, if any.
For this to work, the service account making the request must have domain-wide delegation enabled.














	
class airflow.contrib.operators.hipchat_operator.HipChatAPIOperator(token, base_url='https://api.hipchat.com/v2', *args, **kwargs)

	Base HipChat Operator.
All derived HipChat operators reference from HipChat’s official REST API documentation
at https://www.hipchat.com/docs/apiv2. Before using any HipChat API operators you need
to get an authentication token at https://www.hipchat.com/docs/apiv2/auth.
In the future additional HipChat operators will be derived from this class as well.





	Parameters:	
	token (str) – HipChat REST API authentication token

	base_url (str) – HipChat REST API base url.














	
class airflow.contrib.operators.hipchat_operator.HipChatAPISendRoomNotificationOperator(room_id, message, *args, **kwargs)

	Send notification to a specific HipChat room.
More info: https://www.hipchat.com/docs/apiv2/method/send_room_notification





	Parameters:	
	room_id (str) – Room in which to send notification on HipChat

	message (str) – The message body

	frm (str) – Label to be shown in addition to sender’s name

	message_format (str) – How the notification is rendered: html or text

	color (str) – Background color of the msg: yellow, green, red, purple, gray, or random

	attach_to (str) – The message id to attach this notification to

	notify (bool) – Whether this message should trigger a user notification

	card (dict) – HipChat-defined card object


















Macros

Here’s a list of variables and macros that can be used in templates


Default Variables

The Airflow engine passes a few variables by default that are accessible
in all templates







	Variable
	Description




	{{ ds }}
	the execution date as YYYY-MM-DD


	{{ ds_nodash }}
	the execution date as YYYYMMDD


	{{ yesterday_ds }}
	yesterday’s date as YYYY-MM-DD


	{{ yesterday_ds_nodash }}
	yesterday’s date as YYYYMMDD


	{{ tomorrow_ds }}
	tomorrow’s date as YYYY-MM-DD


	{{ tomorrow_ds_nodash }}
	tomorrow’s date as YYYYMMDD


	{{ ts }}
	same as execution_date.isoformat()


	{{ ts_nodash }}
	same as ts without - and :


	{{ execution_date }}
	the execution_date, (datetime.datetime)


	{{ prev_execution_date }}
	the previous execution date (if available) (datetime.datetime)


	{{ next_execution_date }}
	the next execution date (datetime.datetime)


	{{ dag }}
	the DAG object


	{{ task }}
	the Task object


	{{ macros }}
	a reference to the macros package, described below


	{{ task_instance }}
	the task_instance object


	{{ end_date }}
	same as {{ ds }}


	{{ latest_date }}
	same as {{ ds }}


	{{ ti }}
	same as {{ task_instance }}


	{{ params }}
	a reference to the user-defined params dictionary


	{{ var.value.my_var }}
	global defined variables represented as a dictionary


	{{ var.json.my_var.path }}
	global defined variables represented as a dictionary
with deserialized JSON object, append the path to the
key within the JSON object


	{{ task_instance_key_str }}
	a unique, human-readable key to the task instance
formatted {dag_id}_{task_id}_{ds}


	conf
	the full configuration object located at
airflow.configuration.conf which
represents the content of your
airflow.cfg


	run_id
	the run_id of the current DAG run


	dag_run
	a reference to the DagRun object


	test_mode
	whether the task instance was called using
the CLI’s test subcommand





Note that you can access the object’s attributes and methods with simple
dot notation. Here are some examples of what is possible:
{{ task.owner }}, {{ task.task_id }}, {{ ti.hostname }}, ...
Refer to the models documentation for more information on the objects’
attributes and methods.

The var template variable allows you to access variables defined in Airflow’s
UI. You can access them as either plain-text or JSON. If you use JSON, you are
also able to walk nested structures, such as dictionaries like:
{{ var.json.my_dict_var.key1 }}




Macros

Macros are a way to expose objects to your templates and live under the
macros namespace in your templates.

A few commonly used libraries and methods are made available.







	Variable
	Description




	macros.datetime
	The standard lib’s datetime.datetime


	macros.timedelta
	The standard lib’s datetime.timedelta


	macros.dateutil
	A reference to the dateutil package


	macros.time
	The standard lib’s time


	macros.uuid
	The standard lib’s uuid


	macros.random
	The standard lib’s random





Some airflow specific macros are also defined:


	
airflow.macros.ds_add(ds, days)

	Add or subtract days from a YYYY-MM-DD





	Parameters:	
	ds (str) – anchor date in YYYY-MM-DD format to add to

	days (int) – number of days to add to the ds, you can use negative values









>>> ds_add('2015-01-01', 5)
'2015-01-06'
>>> ds_add('2015-01-06', -5)
'2015-01-01'










	
airflow.macros.ds_format(ds, input_format, output_format)

	Takes an input string and outputs another string
as specified in the output format





	Parameters:	
	ds (str) – input string which contains a date

	input_format (str) – input string format. E.g. %Y-%m-%d

	output_format (str) – output string format  E.g. %Y-%m-%d









>>> ds_format('2015-01-01', "%Y-%m-%d", "%m-%d-%y")
'01-01-15'
>>> ds_format('1/5/2015', "%m/%d/%Y",  "%Y-%m-%d")
'2015-01-05'










	
airflow.macros.random() → x in the interval [0, 1).

	




	
airflow.macros.hive.closest_ds_partition(table, ds, before=True, schema='default', metastore_conn_id='metastore_default')

	This function finds the date in a list closest to the target date.
An optional parameter can be given to get the closest before or after.





	Parameters:	
	table (str) – A hive table name

	ds (datetime.date list) – A datestamp %Y-%m-%d e.g. yyyy-mm-dd

	before (bool or None) – closest before (True), after (False) or either side of ds






	Returns:	The closest date




	Return type:	str or None







>>> tbl = 'airflow.static_babynames_partitioned'
>>> closest_ds_partition(tbl, '2015-01-02')
'2015-01-01'










	
airflow.macros.hive.max_partition(table, schema='default', field=None, filter=None, metastore_conn_id='metastore_default')

	Gets the max partition for a table.





	Parameters:	
	schema (string) – The hive schema the table lives in

	table (string) – The hive table you are interested in, supports the dot
notation as in “my_database.my_table”, if a dot is found,
the schema param is disregarded

	hive_conn_id (string) – The hive connection you are interested in.
If your default is set you don’t need to use this parameter.

	filter (string) – filter on a subset of partition as in
sub_part=’specific_value’

	field – the field to get the max value from. If there’s only
one partition field, this will be inferred









>>> max_partition('airflow.static_babynames_partitioned')
'2015-01-01'














Models

Models are built on top of the SQLAlchemy ORM Base class, and instances are
persisted in the database.


	
class airflow.models.DAG(dag_id, description=u'', schedule_interval=datetime.timedelta(1), start_date=None, end_date=None, full_filepath=None, template_searchpath=None, user_defined_macros=None, default_args=None, concurrency=16, max_active_runs=16, dagrun_timeout=None, sla_miss_callback=None, default_view=u'tree', orientation='LR', catchup=True, params=None)

	Bases: airflow.dag.base_dag.BaseDag, airflow.utils.logging.LoggingMixin

A dag (directed acyclic graph) is a collection of tasks with directional
dependencies. A dag also has a schedule, a start end an end date
(optional). For each schedule, (say daily or hourly), the DAG needs to run
each individual tasks as their dependencies are met. Certain tasks have
the property of depending on their own past, meaning that they can’t run
until their previous schedule (and upstream tasks) are completed.

DAGs essentially act as namespaces for tasks. A task_id can only be
added once to a DAG.





	Parameters:	
	dag_id (string) – The id of the DAG

	description (string) – The description for the DAG to e.g. be shown on the webserver

	schedule_interval (datetime.timedelta or
dateutil.relativedelta.relativedelta or str that acts as a cron
expression) – Defines how often that DAG runs, this
timedelta object gets added to your latest task instance’s
execution_date to figure out the next schedule

	start_date (datetime.datetime) – The timestamp from which the scheduler will
attempt to backfill

	end_date (datetime.datetime) – A date beyond which your DAG won’t run, leave to None
for open ended scheduling

	template_searchpath (string or list of stings) – This list of folders (non relative)
defines where jinja will look for your templates. Order matters.
Note that jinja/airflow includes the path of your DAG file by
default

	user_defined_macros (dict) – a dictionary of macros that will be exposed
in your jinja templates. For example, passing dict(foo='bar')
to this argument allows you to {{ foo }} in all jinja
templates related to this DAG. Note that you can pass any
type of object here.

	default_args (dict) – A dictionary of default parameters to be used
as constructor keyword parameters when initialising operators.
Note that operators have the same hook, and precede those defined
here, meaning that if your dict contains ‘depends_on_past’: True
here and ‘depends_on_past’: False in the operator’s call
default_args, the actual value will be False.

	params (dict) – a dictionary of DAG level parameters that are made
accessible in templates, namespaced under params. These
params can be overridden at the task level.

	concurrency (int) – the number of task instances allowed to run
concurrently

	max_active_runs (int) – maximum number of active DAG runs, beyond this
number of DAG runs in a running state, the scheduler won’t create
new active DAG runs

	dagrun_timeout (datetime.timedelta) – specify how long a DagRun should be up before
timing out / failing, so that new DagRuns can be created

	sla_miss_callback (types.FunctionType) – specify a function to call when reporting SLA
timeouts.

	default_view (string) – Specify DAG default view (tree, graph, duration, gantt, landing_times)

	orientation (string) – Specify DAG orientation in graph view (LR, TB, RL, BT)

	catchup – Perform scheduler catchup (or only run latest)? Defaults to True









“type catchup: bool”


	
add_task(task)

	Add a task to the DAG





	Parameters:	task (task) – the task you want to add










	
add_tasks(tasks)

	Add a list of tasks to the DAG





	Parameters:	tasks (list of tasks) – a lit of tasks you want to add










	
clear(start_date=None, end_date=None, only_failed=False, only_running=False, confirm_prompt=False, include_subdags=True, reset_dag_runs=True, dry_run=False)

	Clears a set of task instances associated with the current dag for
a specified date range.






	
cli()

	Exposes a CLI specific to this DAG






	
concurrency_reached

	Returns a boolean indicating whether the concurrency limit for this DAG
has been reached






	
crawl_for_tasks(objects)

	Typically called at the end of a script by passing globals() as a
parameter. This allows to not explicitly add every single task to the
dag explicitly.






	
create_dagrun(*args, **kwargs)

	Creates a dag run from this dag including the tasks associated with this dag.
Returns the dag run.





	Parameters:	
	run_id (string) – defines the the run id for this dag run

	execution_date (datetime) – the execution date of this dag run

	state (State) – the state of the dag run

	start_date (datetime) – the date this dag run should be evaluated

	external_trigger (bool) – whether this dag run is externally triggered

	session (Session) – database session














	
static deactivate_stale_dags(*args, **kwargs)

	Deactivate any DAGs that were last touched by the scheduler before
the expiration date. These DAGs were likely deleted.





	Parameters:	expiration_date – set inactive DAGs that were touched before this





time
:type expiration_date: datetime
:return: None






	
static deactivate_unknown_dags(*args, **kwargs)

	Given a list of known DAGs, deactivate any other DAGs that are
marked as active in the ORM





	Parameters:	active_dag_ids (list[unicode]) – list of DAG IDs that are active


	Returns:	None










	
filepath

	File location of where the dag object is instantiated






	
folder

	Folder location of where the dag object is instantiated






	
get_active_runs(*args, **kwargs)

	Returns a list of “running” tasks
:param session:
:return: List of execution dates






	
get_dagrun(*args, **kwargs)

	Returns the dag run for a given execution date if it exists, otherwise
none.
:param execution_date: The execution date of the DagRun to find.
:param session:
:return: The DagRun if found, otherwise None.






	
get_last_dagrun(*args, **kwargs)

	Returns the last dag run for this dag, None if there was none.
Last dag run can be any type of run eg. scheduled or backfilled.
Overridden DagRuns are ignored






	
static get_num_task_instances(*args, **kwargs)

	Returns the number of task instances in the given DAG.





	Parameters:	
	session – ORM session

	dag_id (unicode) – ID of the DAG to get the task concurrency of

	task_ids (list[unicode]) – A list of valid task IDs for the given DAG

	states (list[state]) – A list of states to filter by if supplied






	Returns:	The number of running tasks




	Return type:	int












	
get_template_env()

	Returns a jinja2 Environment while taking into account the DAGs
template_searchpath and user_defined_macros






	
is_paused

	Returns a boolean indicating whether this DAG is paused






	
latest_execution_date

	Returns the latest date for which at least one dag run exists






	
normalize_schedule(dttm)

	Returns dttm + interval unless dttm is first interval then it returns dttm






	
run(start_date=None, end_date=None, mark_success=False, include_adhoc=False, local=False, executor=None, donot_pickle=False, ignore_task_deps=False, ignore_first_depends_on_past=False, pool=None)

	Runs the DAG.






	
set_dependency(upstream_task_id, downstream_task_id)

	Simple utility method to set dependency between two tasks that
already have been added to the DAG using add_task()






	
sub_dag(task_regex, include_downstream=False, include_upstream=True)

	Returns a subset of the current dag as a deep copy of the current dag
based on a regex that should match one or many tasks, and includes
upstream and downstream neighbours based on the flag passed.






	
subdags

	Returns a list of the subdag objects associated to this DAG






	
static sync_to_db(*args, **kwargs)

	Save attributes about this DAG to the DB. Note that this method
can be called for both DAGs and SubDAGs. A SubDag is actually a
SubDagOperator.





	Parameters:	dag (DAG) – the DAG object to save to the DB





:own
:param sync_time: The time that the DAG should be marked as sync’ed
:type sync_time: datetime
:return: None






	
topological_sort()

	Sorts tasks in topographical order, such that a task comes after any of its
upstream dependencies.

Heavily inspired by:
http://blog.jupo.org/2012/04/06/topological-sorting-acyclic-directed-graphs/
:return: list of tasks in topological order






	
tree_view()

	Shows an ascii tree representation of the DAG










	
class airflow.models.BaseOperator(task_id, owner='Airflow', email=None, email_on_retry=True, email_on_failure=True, retries=0, retry_delay=datetime.timedelta(0, 300), retry_exponential_backoff=False, max_retry_delay=None, start_date=None, end_date=None, schedule_interval=None, depends_on_past=False, wait_for_downstream=False, dag=None, params=None, default_args=None, adhoc=False, priority_weight=1, queue='default', pool=None, sla=None, execution_timeout=None, on_failure_callback=None, on_success_callback=None, on_retry_callback=None, trigger_rule=u'all_success', resources=None, run_as_user=None, *args, **kwargs)

	Bases: future.types.newobject.newobject

Abstract base class for all operators. Since operators create objects that
become node in the dag, BaseOperator contains many recursive methods for
dag crawling behavior. To derive this class, you are expected to override
the constructor as well as the ‘execute’ method.

Operators derived from this class should perform or trigger certain tasks
synchronously (wait for completion). Example of operators could be an
operator the runs a Pig job (PigOperator), a sensor operator that
waits for a partition to land in Hive (HiveSensorOperator), or one that
moves data from Hive to MySQL (Hive2MySqlOperator). Instances of these
operators (tasks) target specific operations, running specific scripts,
functions or data transfers.

This class is abstract and shouldn’t be instantiated. Instantiating a
class derived from this one results in the creation of a task object,
which ultimately becomes a node in DAG objects. Task dependencies should
be set by using the set_upstream and/or set_downstream methods.

Note that this class is derived from SQLAlchemy’s Base class, which
allows us to push metadata regarding tasks to the database. Deriving this
classes needs to implement the polymorphic specificities documented in
SQLAlchemy. This should become clear while reading the code for other
operators.





	Parameters:	
	task_id (string) – a unique, meaningful id for the task

	owner (string) – the owner of the task, using the unix username is recommended

	retries (int) – the number of retries that should be performed before
failing the task

	retry_delay (timedelta) – delay between retries

	retry_exponential_backoff (bool) – allow progressive longer waits between
retries by using exponential backoff algorithm on retry delay (delay
will be converted into seconds)

	max_retry_delay (timedelta) – maximum delay interval between retries

	start_date (datetime) – The start_date for the task, determines
the execution_date for the first task instance. The best practice
is to have the start_date rounded
to your DAG’s schedule_interval. Daily jobs have their start_date
some day at 00:00:00, hourly jobs have their start_date at 00:00
of a specific hour. Note that Airflow simply looks at the latest
execution_date and adds the schedule_interval to determine
the next execution_date. It is also very important
to note that different tasks’ dependencies
need to line up in time. If task A depends on task B and their
start_date are offset in a way that their execution_date don’t line
up, A’s dependencies will never be met. If you are looking to delay
a task, for example running a daily task at 2AM, look into the
TimeSensor and TimeDeltaSensor. We advise against using
dynamic start_date and recommend using fixed ones. Read the
FAQ entry about start_date for more information.

	end_date (datetime) – if specified, the scheduler won’t go beyond this date

	depends_on_past (bool) – when set to true, task instances will run
sequentially while relying on the previous task’s schedule to
succeed. The task instance for the start_date is allowed to run.

	wait_for_downstream (bool) – when set to true, an instance of task
X will wait for tasks immediately downstream of the previous instance
of task X to finish successfully before it runs. This is useful if the
different instances of a task X alter the same asset, and this asset
is used by tasks downstream of task X. Note that depends_on_past
is forced to True wherever wait_for_downstream is used.

	queue (str) – which queue to target when running this job. Not
all executors implement queue management, the CeleryExecutor
does support targeting specific queues.

	dag (DAG) – a reference to the dag the task is attached to (if any)

	priority_weight (int) – priority weight of this task against other task.
This allows the executor to trigger higher priority tasks before
others when things get backed up.

	pool (str) – the slot pool this task should run in, slot pools are a
way to limit concurrency for certain tasks

	sla (datetime.timedelta) – time by which the job is expected to succeed. Note that
this represents the timedelta after the period is closed. For
example if you set an SLA of 1 hour, the scheduler would send dan email
soon after 1:00AM on the 2016-01-02 if the 2016-01-01 instance
has not succeeded yet.
The scheduler pays special attention for jobs with an SLA and
sends alert
emails for sla misses. SLA misses are also recorded in the database
for future reference. All tasks that share the same SLA time
get bundled in a single email, sent soon after that time. SLA
notification are sent once and only once for each task instance.

	execution_timeout (datetime.timedelta) – max time allowed for the execution of
this task instance, if it goes beyond it will raise and fail.

	on_failure_callback (callable) – a function to be called when a task instance
of this task fails. a context dictionary is passed as a single
parameter to this function. Context contains references to related
objects to the task instance and is documented under the macros
section of the API.

	on_retry_callback – much like the on_failure_callback except
that it is executed when retries occur.

	on_success_callback (callable) – much like the on_failure_callback except
that it is executed when the task succeeds.

	trigger_rule (str) – defines the rule by which dependencies are applied
for the task to get triggered. Options are:
{ all_success | all_failed | all_done | one_success |
one_failed | dummy}
default is all_success. Options can be set as string or
using the constants defined in the static class
airflow.utils.TriggerRule

	resources (dict) – A map of resource parameter names (the argument names of the
Resources constructor) to their values.

	run_as_user (str) – unix username to impersonate while running the task










	
clear(start_date=None, end_date=None, upstream=False, downstream=False)

	Clears the state of task instances associated with the task, following
the parameters specified.






	
dag

	Returns the Operator’s DAG if set, otherwise raises an error






	
deps

	Returns the list of dependencies for the operator. These differ from execution
context dependencies in that they are specific to tasks and can be
extended/overridden by subclasses.






	
detect_downstream_cycle(task=None)

	When invoked, this routine will raise an exception if a cycle is
detected downstream from self. It is invoked when tasks are added to
the DAG to detect cycles.






	
downstream_list

	@property: list of tasks directly downstream






	
execute(context)

	This is the main method to derive when creating an operator.
Context is the same dictionary used as when rendering jinja templates.

Refer to get_template_context for more context.






	
get_direct_relatives(upstream=False)

	Get the direct relatives to the current task, upstream or
downstream.






	
get_flat_relatives(upstream=False, l=None)

	Get a flat list of relatives, either upstream or downstream.






	
get_task_instances(session, start_date=None, end_date=None)

	Get a set of task instance related to this task for a specific date
range.






	
has_dag()

	Returns True if the Operator has been assigned to a DAG.






	
on_kill()

	Override this method to cleanup subprocesses when a task instance
gets killed. Any use of the threading, subprocess or multiprocessing
module within an operator needs to be cleaned up or it will leave
ghost processes behind.






	
post_execute(context, result=None)

	This hook is triggered right after self.execute() is called.
It is passed the execution context and any results returned by the
operator.






	
pre_execute(context)

	This hook is triggered right before self.execute() is called.






	
prepare_template()

	Hook that is triggered after the templated fields get replaced
by their content. If you need your operator to alter the
content of the file before the template is rendered,
it should override this method to do so.






	
render_template(attr, content, context)

	Renders a template either from a file or directly in a field, and returns
the rendered result.






	
render_template_from_field(attr, content, context, jinja_env)

	Renders a template from a field. If the field is a string, it will
simply render the string and return the result. If it is a collection or
nested set of collections, it will traverse the structure and render
all strings in it.






	
run(start_date=None, end_date=None, ignore_first_depends_on_past=False, ignore_ti_state=False, mark_success=False)

	Run a set of task instances for a date range.






	
schedule_interval

	The schedule interval of the DAG always wins over individual tasks so
that tasks within a DAG always line up. The task still needs a
schedule_interval as it may not be attached to a DAG.






	
set_downstream(task_or_task_list)

	Set a task, or a task task to be directly downstream from the current
task.






	
set_upstream(task_or_task_list)

	Set a task, or a task task to be directly upstream from the current
task.






	
upstream_list

	@property: list of tasks directly upstream






	
xcom_pull(context, task_ids, dag_id=None, key=u'return_value', include_prior_dates=None)

	See TaskInstance.xcom_pull()






	
xcom_push(context, key, value, execution_date=None)

	See TaskInstance.xcom_push()










	
class airflow.models.TaskInstance(task, execution_date, state=None)

	Bases: sqlalchemy.ext.declarative.api.Base

Task instances store the state of a task instance. This table is the
authority and single source of truth around what tasks have run and the
state they are in.

The SqlAlchemy model doesn’t have a SqlAlchemy foreign key to the task or
dag model deliberately to have more control over transactions.

Database transactions on this table should insure double triggers and
any confusion around what task instances are or aren’t ready to run
even while multiple schedulers may be firing task instances.


	
are_dependencies_met(*args, **kwargs)

	Returns whether or not all the conditions are met for this task instance to be run
given the context for the dependencies (e.g. a task instance being force run from
the UI will ignore some dependencies).





	Parameters:	
	dep_context (DepContext) – The execution context that determines the dependencies that
should be evaluated.

	session (Session) – database session

	verbose (boolean) – whether or not to print details on failed dependencies














	
are_dependents_done(*args, **kwargs)

	Checks whether the dependents of this task instance have all succeeded.
This is meant to be used by wait_for_downstream.

This is useful when you do not want to start processing the next
schedule of a task until the dependents are done. For instance,
if the task DROPs and recreates a table.






	
clear_xcom_data(*args, **kwargs)

	Clears all XCom data from the database for the task instance






	
command(mark_success=False, ignore_all_deps=False, ignore_depends_on_past=False, ignore_task_deps=False, ignore_ti_state=False, local=False, pickle_id=None, raw=False, job_id=None, pool=None, cfg_path=None)

	Returns a command that can be executed anywhere where airflow is
installed. This command is part of the message sent to executors by
the orchestrator.






	
command_as_list(mark_success=False, ignore_all_deps=False, ignore_task_deps=False, ignore_depends_on_past=False, ignore_ti_state=False, local=False, pickle_id=None, raw=False, job_id=None, pool=None, cfg_path=None)

	Returns a command that can be executed anywhere where airflow is
installed. This command is part of the message sent to executors by
the orchestrator.






	
current_state(*args, **kwargs)

	Get the very latest state from the database, if a session is passed,
we use and looking up the state becomes part of the session, otherwise
a new session is used.






	
error(*args, **kwargs)

	Forces the task instance’s state to FAILED in the database.






	
static generate_command(dag_id, task_id, execution_date, mark_success=False, ignore_all_deps=False, ignore_depends_on_past=False, ignore_task_deps=False, ignore_ti_state=False, local=False, pickle_id=None, file_path=None, raw=False, job_id=None, pool=None, cfg_path=None)

	Generates the shell command required to execute this task instance.





	Parameters:	
	dag_id (unicode) – DAG ID

	task_id (unicode) – Task ID

	execution_date (datetime) – Execution date for the task

	mark_success (bool) – Whether to mark the task as successful

	ignore_all_deps (boolean) – Ignore all ignorable dependencies.
Overrides the other ignore_* parameters.

	ignore_depends_on_past (boolean) – Ignore depends_on_past parameter of DAGs
(e.g. for Backfills)

	ignore_task_deps (boolean) – Ignore task-specific dependencies such as depends_on_past
and trigger rule

	ignore_ti_state (boolean) – Ignore the task instance’s previous failure/success

	local (bool) – Whether to run the task locally

	pickle_id – If the DAG was serialized to the DB, the ID









associated with the pickled DAG
:type pickle_id: unicode
:param file_path: path to the file containing the DAG definition
:param raw: raw mode (needs more details)
:param job_id: job ID (needs more details)
:param pool: the Airflow pool that the task should run in
:type pool: unicode
:return: shell command that can be used to run the task instance






	
get_dagrun(*args, **kwargs)

	Returns the DagRun for this TaskInstance
:param session:
:return: DagRun






	
init_on_load()

	Initialize the attributes that aren’t stored in the DB.






	
is_premature

	Returns whether a task is in UP_FOR_RETRY state and its retry interval
has elapsed.






	
key

	Returns a tuple that identifies the task instance uniquely






	
next_retry_datetime()

	Get datetime of the next retry if the task instance fails. For exponential
backoff, retry_delay is used as base and will be converted to seconds.






	
pool_full(*args, **kwargs)

	Returns a boolean as to whether the slot pool has room for this
task to run






	
previous_ti

	The task instance for the task that ran before this task instance






	
ready_for_retry()

	Checks on whether the task instance is in the right state and timeframe
to be retried.






	
refresh_from_db(*args, **kwargs)

	Refreshes the task instance from the database based on the primary key





	Parameters:	lock_for_update – if True, indicates that the database should
lock the TaskInstance (issuing a FOR UPDATE clause) until the
session is committed.










	
run(*args, **kwargs)

	Runs the task instance.





	Parameters:	
	verbose (boolean) – whether to turn on more verbose logging

	ignore_all_deps (boolean) – Ignore all of the non-critical dependencies, just runs

	ignore_depends_on_past (boolean) – Ignore depends_on_past DAG attribute

	ignore_task_deps (boolean) – Don’t check the dependencies of this TI’s task

	ignore_ti_state (boolean) – Disregards previous task instance state

	mark_success (boolean) – Don’t run the task, mark its state as success

	test_mode (boolean) – Doesn’t record success or failure in the DB

	pool (str) – specifies the pool to use to run the task instance














	
xcom_pull(task_ids, dag_id=None, key=u'return_value', include_prior_dates=False)

	Pull XComs that optionally meet certain criteria.

The default value for key limits the search to XComs
that were returned by other tasks (as opposed to those that were pushed
manually). To remove this filter, pass key=None (or any desired value).

If a single task_id string is provided, the result is the value of the
most recent matching XCom from that task_id. If multiple task_ids are
provided, a tuple of matching values is returned. None is returned
whenever no matches are found.





	Parameters:	
	key (string) – A key for the XCom. If provided, only XComs with matching
keys will be returned. The default key is ‘return_value’, also
available as a constant XCOM_RETURN_KEY. This key is automatically
given to XComs returned by tasks (as opposed to being pushed
manually). To remove the filter, pass key=None.

	task_ids (string or iterable of strings (representing task_ids)) – Only XComs from tasks with matching ids will be
pulled. Can pass None to remove the filter.

	dag_id (string) – If provided, only pulls XComs from this DAG.
If None (default), the DAG of the calling task is used.

	include_prior_dates (bool) – If False, only XComs from the current
execution_date are returned. If True, XComs from previous dates
are returned as well.














	
xcom_push(key, value, execution_date=None)

	Make an XCom available for tasks to pull.





	Parameters:	
	key (string) – A key for the XCom

	value (any pickleable object) – A value for the XCom. The value is pickled and stored
in the database.

	execution_date (datetime) – if provided, the XCom will not be visible until
this date. This can be used, for example, to send a message to a
task on a future date without it being immediately visible.


















	
class airflow.models.DagBag(dag_folder=None, executor=<airflow.executors.sequential_executor.SequentialExecutor object>, include_examples=True)

	Bases: airflow.dag.base_dag.BaseDagBag, airflow.utils.logging.LoggingMixin

A dagbag is a collection of dags, parsed out of a folder tree and has high
level configuration settings, like what database to use as a backend and
what executor to use to fire off tasks. This makes it easier to run
distinct environments for say production and development, tests, or for
different teams or security profiles. What would have been system level
settings are now dagbag level so that one system can run multiple,
independent settings sets.





	Parameters:	
	dag_folder (unicode) – the folder to scan to find DAGs

	executor – the executor to use when executing task instances
in this DagBag

	include_examples (bool) – whether to include the examples that ship
with airflow or not

	sync_to_db (bool) – whether to sync the properties of the DAGs to
the metadata DB while finding them, typically should be done
by the scheduler job only










	
bag_dag(dag, parent_dag, root_dag)

	Adds the DAG into the bag, recurses into sub dags.






	
collect_dags(dag_folder=None, only_if_updated=True)

	Given a file path or a folder, this method looks for python modules,
imports them and adds them to the dagbag collection.

Note that if a .airflowignore file is found while processing,
the directory, it will behaves much like a .gitignore does,
ignoring files that match any of the regex patterns specified
in the file.






	
dagbag_report()

	Prints a report around DagBag loading stats






	
get_dag(dag_id)

	Gets the DAG out of the dictionary, and refreshes it if expired






	
kill_zombies(*args, **kwargs)

	Fails tasks that haven’t had a heartbeat in too long






	
process_file(filepath, only_if_updated=True, safe_mode=True)

	Given a path to a python module or zip file, this method imports
the module and look for dag objects within it.






	
size()

	



	Returns:	the amount of dags contained in this dagbag














	
class airflow.models.Connection(conn_id=None, conn_type=None, host=None, login=None, password=None, schema=None, port=None, extra=None, uri=None)

	Bases: sqlalchemy.ext.declarative.api.Base

Placeholder to store information about different database instances
connection information. The idea here is that scripts use references to
database instances (conn_id) instead of hard coding hostname, logins and
passwords when using operators or hooks.


	
extra_dejson

	Returns the extra property by deserializing json.












Hooks

Importer that dynamically loads a class and module from its parent. This
allows Airflow to support from airflow.operators import BashOperator
even though BashOperator is actually in
airflow.operators.bash_operator.

The importer also takes over for the parent_module by wrapping it. This is
required to support attribute-based usage:

from airflow import operators
operators.BashOperator(...)






	
class airflow.hooks.DbApiHook(*args, **kwargs)

	Bases: airflow.hooks.base_hook.BaseHook

Abstract base class for sql hooks.


	
bulk_dump(table, tmp_file)

	Dumps a database table into a tab-delimited file





	Parameters:	
	table (str) – The name of the source table

	tmp_file (str) – The path of the target file














	
bulk_load(table, tmp_file)

	Loads a tab-delimited file into a database table





	Parameters:	
	table (str) – The name of the target table

	tmp_file (str) – The path of the file to load into the table














	
get_conn()

	Returns a connection object






	
get_cursor()

	Returns a cursor






	
get_first(sql, parameters=None)

	Executes the sql and returns the first resulting row.





	Parameters:	
	sql (str or list) – the sql statement to be executed (str) or a list of
sql statements to execute

	parameters (mapping or iterable) – The parameters to render the SQL query with.














	
get_pandas_df(sql, parameters=None)

	Executes the sql and returns a pandas dataframe





	Parameters:	
	sql (str or list) – the sql statement to be executed (str) or a list of
sql statements to execute

	parameters (mapping or iterable) – The parameters to render the SQL query with.














	
get_records(sql, parameters=None)

	Executes the sql and returns a set of records.





	Parameters:	
	sql (str or list) – the sql statement to be executed (str) or a list of
sql statements to execute

	parameters (mapping or iterable) – The parameters to render the SQL query with.














	
insert_rows(table, rows, target_fields=None, commit_every=1000)

	A generic way to insert a set of tuples into a table,
the whole set of inserts is treated as one transaction





	Parameters:	
	table (str) – Name of the target table

	rows (iterable of tuples) – The rows to insert into the table

	target_fields (iterable of strings) – The names of the columns to fill in the table

	commit_every (int) – The maximum number of rows to insert in one
transaction. Set to 0 to insert all rows in one transaction.














	
run(sql, autocommit=False, parameters=None)

	Runs a command or a list of commands. Pass a list of sql
statements to the sql parameter to get them to execute
sequentially





	Parameters:	
	sql (str or list) – the sql statement to be executed (str) or a list of
sql statements to execute

	autocommit (bool) – What to set the connection’s autocommit setting to
before executing the query.

	parameters (mapping or iterable) – The parameters to render the SQL query with.


















	
class airflow.hooks.HttpHook(method='POST', http_conn_id='http_default')

	Bases: airflow.hooks.base_hook.BaseHook

Interact with HTTP servers.


	
get_conn(headers)

	Returns http session for use with requests






	
run(endpoint, data=None, headers=None, extra_options=None)

	Performs the request






	
run_and_check(session, prepped_request, extra_options)

	Grabs extra options like timeout and actually runs the request,
checking for the result










	
class airflow.hooks.SqliteHook(*args, **kwargs)

	Bases: airflow.hooks.dbapi_hook.DbApiHook

Interact with SQLite.


	
get_conn()

	Returns a sqlite connection object










Community contributed hooks

Importer that dynamically loads a class and module from its parent. This
allows Airflow to support from airflow.operators import BashOperator
even though BashOperator is actually in
airflow.operators.bash_operator.

The importer also takes over for the parent_module by wrapping it. This is
required to support attribute-based usage:

from airflow import operators
operators.BashOperator(...)






	
class airflow.contrib.hooks.BigQueryHook(bigquery_conn_id='bigquery_default', delegate_to=None)

	Bases: airflow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook, airflow.hooks.dbapi_hook.DbApiHook

Interact with BigQuery. This hook uses the Google Cloud Platform
connection.


	
get_conn()

	Returns a BigQuery PEP 249 connection object.






	
get_pandas_df(bql, parameters=None)

	Returns a Pandas DataFrame for the results produced by a BigQuery
query. The DbApiHook method must be overridden because Pandas
doesn’t support PEP 249 connections, except for SQLite. See:

https://github.com/pydata/pandas/blob/master/pandas/io/sql.py#L447
https://github.com/pydata/pandas/issues/6900





	Parameters:	bql (string) – The BigQuery SQL to execute.










	
get_service()

	Returns a BigQuery service object.






	
insert_rows(table, rows, target_fields=None, commit_every=1000)

	Insertion is currently unsupported. Theoretically, you could use
BigQuery’s streaming API to insert rows into a table, but this hasn’t
been implemented.






	
table_exists(project_id, dataset_id, table_id)

	Checks for the existence of a table in Google BigQuery.





	Parameters:	project_id – The Google cloud project in which to look for the table. The connection supplied to the hook





must provide access to the specified project.
:type project_id: string
:param dataset_id: The name of the dataset in which to look for the table.


storage bucket.






	Parameters:	table_id (string) – The name of the table to check the existence of.














	
class airflow.contrib.hooks.GoogleCloudStorageHook(google_cloud_storage_conn_id='google_cloud_storage_default', delegate_to=None)

	Bases: airflow.contrib.hooks.gcp_api_base_hook.GoogleCloudBaseHook

Interact with Google Cloud Storage. This hook uses the Google Cloud Platform
connection.


	
download(bucket, object, filename=False)

	Get a file from Google Cloud Storage.





	Parameters:	
	bucket (string) – The bucket to fetch from.

	object (string) – The object to fetch.

	filename (string) – If set, a local file path where the file should be written to.














	
exists(bucket, object)

	Checks for the existence of a file in Google Cloud Storage.





	Parameters:	
	bucket (string) – The Google cloud storage bucket where the object is.

	object (string) – The name of the object to check in the Google cloud
storage bucket.














	
get_conn()

	Returns a Google Cloud Storage service object.






	
is_updated_after(bucket, object, ts)

	Checks if an object is updated in Google Cloud Storage.





	Parameters:	
	bucket (string) – The Google cloud storage bucket where the object is.

	object (string) – The name of the object to check in the Google cloud
storage bucket.

	ts (datetime) – The timestamp to check against.














	
upload(bucket, object, filename, mime_type='application/octet-stream')

	Uploads a local file to Google Cloud Storage.





	Parameters:	
	bucket (string) – The bucket to upload to.

	object (string) – The object name to set when uploading the local file.

	filename (string) – The local file path to the file to be uploaded.

	mime_type (string) – The MIME type to set when uploading the file.


















	
class airflow.contrib.hooks.FTPHook(ftp_conn_id='ftp_default')

	Bases: airflow.hooks.base_hook.BaseHook

Interact with FTP.

Errors that may occur throughout but should be handled
downstream.


	
close_conn()

	Closes the connection. An error will occur if the
connection wasn’t ever opened.






	
create_directory(path)

	Creates a directory on the remote system.





	Parameters:	path (str) – full path to the remote directory to create










	
delete_directory(path)

	Deletes a directory on the remote system.





	Parameters:	path (str) – full path to the remote directory to delete










	
delete_file(path)

	Removes a file on the FTP Server.





	Parameters:	path (str) – full path to the remote file










	
describe_directory(path)

	Returns a dictionary of {filename: {attributes}} for all files
on the remote system (where the MLSD command is supported).





	Parameters:	path (str) – full path to the remote directory










	
get_conn()

	Returns a FTP connection object






	
list_directory(path, nlst=False)

	Returns a list of files on the remote system.





	Parameters:	path (str) – full path to the remote directory to list










	
rename(from_name, to_name)

	Rename a file.





	Parameters:	
	from_name – rename file from name

	to_name – rename file to name














	
retrieve_file(remote_full_path, local_full_path_or_buffer)

	Transfers the remote file to a local location.

If local_full_path_or_buffer is a string path, the file will be put
at that location; if it is a file-like buffer, the file will
be written to the buffer but not closed.





	Parameters:	
	remote_full_path (str) – full path to the remote file

	local_full_path_or_buffer – full path to the local file or a
file-like buffer














	
store_file(remote_full_path, local_full_path_or_buffer)

	Transfers a local file to the remote location.

If local_full_path_or_buffer is a string path, the file will be read
from that location; if it is a file-like buffer, the file will
be read from the buffer but not closed.





	Parameters:	
	remote_full_path (str) – full path to the remote file

	local_full_path_or_buffer (str or file-like buffer) – full path to the local file or a
file-like buffer


















	
class airflow.contrib.hooks.SSHHook(conn_id='ssh_default')

	Bases: airflow.hooks.base_hook.BaseHook

Light-weight remote execution library and utilities.

Using this hook (which is just a convenience wrapper for subprocess),
is created to let you stream data from a remotely stored file.

As a bonus, SSHHook also provides a really cool feature that let’s you
set up ssh tunnels super easily using a python context manager (there is an example
in the integration part of unittests).





	Parameters:	
	key_file (str) – Typically the SSHHook uses the keys that are used by the user
airflow is running under. This sets the behavior to use another file instead.

	connect_timeout (int) – sets the connection timeout for this connection.

	no_host_key_check (bool) – whether to check to host key. If True host keys will not
be checked, but are also not stored in the current users’s known_hosts file.

	tty (bool) – allocate a tty.

	sshpass (bool) – Use to non-interactively perform password authentication by using
sshpass.










	
Popen(cmd, **kwargs)

	Remote Popen





	Parameters:	
	cmd – command to remotely execute

	kwargs – extra arguments to Popen (see subprocess.Popen)






	Returns:	handle to subprocess












	
check_output(cmd)

	Executes a remote command and returns the stdout a remote process.
Simplified version of Popen when you only want the output as a string and detect any errors.





	Parameters:	cmd – command to remotely execute


	Returns:	stdout










	
tunnel(*args, **kwds)

	Creates a tunnel between two hosts. Like ssh -L <LOCAL_PORT>:host:<REMOTE_PORT>.
Remember to close() the returned “tunnel” object in order to clean up
after yourself when you are done with the tunnel.





	Parameters:	
	local_port (int) – 

	remote_port (int) – 

	remote_host (str) – 






	Returns:	
















	
class airflow.contrib.hooks.gcs_hook.GoogleCloudStorageHook(google_cloud_storage_conn_id='google_cloud_storage_default', delegate_to=None)

	Interact with Google Cloud Storage. This hook uses the Google Cloud Platform
connection.










Executors

Executors are the mechanism by which task instances get run.


	
class airflow.executors.LocalExecutor(parallelism=32)

	Bases: airflow.executors.base_executor.BaseExecutor

LocalExecutor executes tasks locally in parallel. It uses the
multiprocessing Python library and queues to parallelize the execution
of tasks.






	
class airflow.executors.SequentialExecutor

	Bases: airflow.executors.base_executor.BaseExecutor

This executor will only run one task instance at a time, can be used
for debugging. It is also the only executor that can be used with sqlite
since sqlite doesn’t support multiple connections.

Since we want airflow to work out of the box, it defaults to this
SequentialExecutor alongside sqlite as you first install it.






Community-contributed executors


	
class airflow.contrib.executors.mesos_executor.MesosExecutor(parallelism=32)

	MesosExecutor allows distributing the execution of task
instances to multiple mesos workers.

Apache Mesos is a distributed systems kernel which abstracts
CPU, memory, storage, and other compute resources away from
machines (physical or virtual), enabling fault-tolerant and
elastic distributed systems to easily be built and run effectively.
See http://mesos.apache.org/
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